

Bug Tracking for Improving

Software Reliability

​

Abstract

Contents

Introduction

 ​ ​ Vision

 ​ ​ Scope

 ​ ​ Definition, Acronyms, Abbreviations

 ​ ​ Overview

 ​ System Analysis

 ​ ​ Existing System

 ​ ​ ​ Limitations in Existing System

 ​ ​ Proposed System

 ​ ​ ​ Advantages over Existing System

 ​ ​ Feasibility Study

 ​ ​ ​ Economic Feasibility

 ​ ​ ​ Operational Feasibility

 ​ ​ ​ Technical Feasibility

 ​ ​

Software Requirement Specification

 ​ ​ Software Requirements

 ​ ​ Hardware Requirements

System Design

 ​ ​ Architecture Diagram

Authentication

 ​ ​ ​ Functional Description

 ​ ​ ​ Functions

 ​ ​ Maintenance

 ​ ​ ​ Functional Description

 ​ ​ ​ Functions

 ​ ​ E - R Diagrams

 ​ ​ UML Diagrams

 ​ ​ ​ Class Diagram

 ​ ​ ​ Use-case Diagram

 ​ ​ ​ Sequence Diagram

 ​ ​ ​ Component Diagram

 ​ ​ ​ Deployment Diagram

​ ​ Data Dictionary

Coding & Implementation

​ Technologies Used

 ​ ​ HTML & JavaScript, XML

​ ​ Java Technology

 ​ ​ Database Tool / SQL

 ​ ​ Webserver / Application Server

Snapshots

User Groups

Testing

Scope for Future Enhancements

Project Summary

Bibliography

Abstract

Bug Tracking for Improving Software Reliability (BTS) is an automated system that

can be useful to employees and the managers in any functional organization. Bug

Tracking System gives the facility to define the tasks in the organization and also

allows the managers to track the bugs spent by the employee for that particular

task. A report generation facility is supported in BTS that allows the managers to

analyze which are those skills by employee are utilized and those which are not

utilized. This tool can help managers for Bug estimation per project or application.

This tool helps employees to document their Bugs and analyze

This project aims at creation of a Bug Tracking System. This project will be

accessible to all developers and its facility allows developers to focus on creating

the database schema and while letting the application server define table based on

the fields in JSP and relationships between them. This system provides the following

facilities.

The objectives of this system are:

●​ To keep track of employee skills and based on the skills assigning of the task

is done to an employee.

●​ Employee does bugs capturing. It can be done on daily basis.

Various Reports are generated by this System for an employee and as well as to a

manager.

Introduction

Vision
The purpose of Bug Tracking for improving software reliability is to provide better

service to the administrator or useful for applications developed in an organization.

Scope

The Bug Tracking for Improving Software Reliability is a web based application that

can be accessed throughout the organization. This system can be used for logging

bugs against an application/module, assigning bugs to team members and tracking

the bugs to resolution. There are features like email notifications, user

maintenance, user access control, report generators etc in this system.

Definition, Acronyms, Abbreviations
Bug - A software bug (or just "bug") is an error, flaw, mistake, failure, or fault in a

computer program that prevents it from behaving as intended (e.g., producing an

incorrect result). Most bugs arise from mistakes and errors made by people in

either a program's source code or its design, and a few are caused by compilers

producing incorrect code.

Overview
 Bug tracking is the process of reporting and tracking the progress of bugs from

discovery through to resolution, where a bug is defined as a deviation from

requirements. Other terminology frequently used to describe this process include

●​ problem tracking

●​ change management

●​ fault management

●​ trouble tickets

Bug tracking systems are most commonly used in the coding and testing phases of

the software development process. However, tracking systems can in fact be used

for many other purposes such as general issue tracking, simple task lists, help desk

situations or contact management, where the focus is on the tracking aspect rather

than what is being tracked. Even in software development, tracking systems are

quite often not limited to simply tracking bugs, but extended to track feature

requests or enhancements as well as enquiries.

System Analysis
 ​ ​

Existing System
 ​ ​ ​
The existing system consists of entering the details in the Microsoft Excel Sheets for

the storing of the data. When a manager needs information of the employee he

searches for the specified file in the file system. He opens the file and takes the

information. Report Generation done manually by copying the content of the

different files into another file. The Manually generated report was then printed.

Limitations in Existing System

●​ Information retrieval is a very big process.

●​ Lack of organization of the files may porn to information loss due to

accidental deletion of files.

●​ No security because the files are visible to the users.

●​ Report generation will be a big task.

Proposed System

The Proposed system is a browser which is completely related to online system,

which provides the centralized database. It stores bugs data and description of the

particular bug data. It can also create Excel reports and PDF documents based on

the information in its database.

Advantages over Existing System

●​ The performance is increased due to well designed database.

●​ Security is increased

●​ Time saving in report generation

●​ Easy to update the details

Feasibility Study

Economic Feasibility

Economic feasibility attempts 2 weigh the costs of developing and implementing a

new system, against the benefits that would accrue from having the new system in

place. This feasibility study gives the top management the economic justification for

the new system.

A simple economic analysis which gives the actual comparison of costs and benefits

are much more meaningful in this case. In addition, this proves to be a useful point

of reference to compare actual costs as the project progresses. There could be

various types of intangible benefits on account of automation. These could include

increased customer satisfaction, improvement in product quality better decision

making timeliness of information, expediting activities, improved accuracy of

operations, better documentation and record keeping, faster retrieval of

information, better employee morale.

Operational Feasibility

Proposed project is beneficial only if it can be turned into information systems that

will meet the organizations operating requirements. Simply stated, this test of

feasibility asks if the system will work when it is developed and installed. Are there

major barriers to Implementation? Here are questions that will help test the

operational feasibility of a project:

Is there sufficient support for the project from management from users? If the

current system is well liked and used to the extent that persons will not be able to

see reasons for change, there may be resistance.

Are the current business methods acceptable to the user? If they are not, Users

may welcome a change that will bring about a more operational and useful

systems.

Have the user been involved in the planning and development of the project?

Early involvement reduces the chances of resistance to the system and in general

and increases the likelihood of successful project.

Since the proposed system was to help reduce the hardships encountered. In the

existing manual system, the new system was considered to be operational feasible.

Technical Feasibility

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is

because, .at this point in time, not too many detailed design of the system, making

it difficult to access issues like performance, costs on (on account of the kind of

technology to be deployed) etc. A number of issues have to be considered while

doing a technical analysis.

Understand the different technologies involved in the proposed system before

commencing the project we have to be very clear about what are the technologies

that are to be required for the development of the new system. Find out whether

the organization currently possesses the required technologies. Is the required

technology available with the organization?

Software Requirement

Specification
 ​

Software Requirements

Operating System​ ​ ​ :​ ​ Windows XP/2003 or Linux/Solaris

User Interface​ ​ ​ :​ ​ HTML, CSS

Client-side Scripting​ ​ :​ ​ JavaScript

Programming Language​ ​ :​ ​ Java

Web Applications​ ​ ​ :​ ​ JDBC, JNDI, Servlets, JSP

IDE/Workbench​ ​ ​ :​ ​ Eclipse with MyEclipse Plug-in

Database​ ​ ​ ​ :​ ​ Oracle/Access

Server Deployment​​ ​ :​ ​ RetHat JBoss AS

Hardware Requirements

Processor​ ​ ​ ​ :​ ​ Pentium IV

Hard Disk​ ​ ​ ​ :​ ​ 40GB

RAM​ ​ ​ ​ ​ :​ ​ 256MB

System Design
 ​ ​

Architecture Diagram

 ​

​

Authentication

Functional Description
a.​ Login to the system through the first page of the application.

b.​ Change the password after login to the application.

c.​ See his/her details and change it.

d.​ Help from the system.

 ​ ​

Maintenance

Functional Description

●​ User Maintenance: Creating, Granting & Revoking access and deleting users

from application.

●​ Component Maintenance: Creating a component (application being developed

/ enhanced), Granting & Revoking access on components to Users and

Marking a component as “Active” or “Closed”.

●​ Bug Tracking: Creating, Assigning Bugs to users, Modifying and Closing a

Bug. A Bug screen should at least have following details

●​ Bug Number and Title

●​ Bug priority

●​ Date created

●​ Find User: A search screen to find users and display results

●​ Find component: A search screen to find components and display results

●​ Find Bug: A search screen to find Bugs and display results

●​ Report: Generate reports on Bugs

Modules:

Admin: This module has the entire access to all other modules, admin creates the

project and assigning the projects to the created manager, adding members to the

managers, assigning bugs based on the priority. Can update the manager, members

and access to the particular project data. Generating reports based on the

managers report submission.

Manager: Manager has the full access to the particular project assigned by the

admin and controls the team members access to the bugs assigned. Has the

permission to generate the reports and update the information of team members

and adding members to the project.

Developer: Can access the task or bug assigned by the manager, view assigned

projects and resolving the assigned bug. Developer can view the bugs list assigned

by the manager.

Tester: Tester can access to the projects or bugs assigned by the manager, can

view the assigned projects and can add a new bug to the list and send the bug back

to the manager. Tester can login to the system and access the assigned projects

list.

Reports: Both Admin and Manager can access this module and generate the

reports based on the requirements.

Functions

✔​ Admin​

✔​ Manger

✔​ Developer

✔​ Tester

✔​ Reports

E - R Diagrams

UML Diagrams
Unified Modeling Language:

The Unified Modeling Language allows the software engineer to express an analysis

model using the modeling notation that is governed by a set of syntactic semantic

and pragmatic rules.

A UML system is represented using five different views that describe the system

from distinctly different perspective. Each view is defined by a set of diagram,

which is as follows.

●​ User Model View

i.​ This view represents the system from the users perspective.

ii.​ The analysis representation describes a usage scenario from the

end-users perspective.

●​ Structural model view

i.​ In this model the data and functionality are arrived from inside

the system.

ii.​ This model view models the static structures.

●​ Behavioral Model View

It represents the dynamic of behavioral as parts of the system,

depicting the interactions of collection between various structural

elements described in the user model and structural model view.

●​ Implementation Model View

In this the structural and behavioral as parts of the system are

represented as they are to be built.

●​ Environmental Model View

In this the structural and behavioral aspects of the environment in

which the system is to be implemented are represented.

UML is specifically constructed through two different domains they are:

✔​ UML Analysis modeling, this focuses on the user model and structural model

views of the system.

✔​ UML design modeling, which focuses on the behavioral modeling,

implementation modeling and environmental model views.

Use case Diagrams represent the functionality of the system from a user’s point of

view. Use cases are used during requirements elicitation and analysis to represent

the functionality of the system. Use cases focus on the behavior of the system from

external point of view.

Actors are external entities that interact with the system. Examples of actors

include users like administrator, bank customer …etc., or another system like

central database.

Class Diagram

Use-case Diagram

se-case Diagram

Sequence Diagram

Component Diagram

Deployment Diagram

Coding
&

Implementation
​

Technologies Used

HTML
HTML, an initialism of Hypertext Markup Language, is the predominant markup

language for web pages. It provides a means to describe the structure of

text-based information in a document — by denoting certain text as headings,

paragraphs, lists, and so on — and to supplement that text with interactive forms,

embedded images, and other objects. HTML is written in the form of labels (known

as tags), surrounded by angle brackets. HTML can also describe, to some degree,

the appearance and semantics of a document, and can include embedded scripting

language code which can affect the behavior of web browsers and other HTML

processors.

HTML is also often used to refer to content of the MIME type text/html or even

more broadly as a generic term for HTML whether in its XML-descended form (such

as XHTML 1.0 and later) or its form descended directly from SGML

Hyper Text Markup Language

Hypertext Markup Language (HTML), the languages of the World Wide Web (WWW),

allows users to produces Web pages that include text, graphics and pointer to other

Web pages (Hyperlinks).

HTML is not a programming language but it is an application of ISO Standard 8879,

SGML (Standard Generalized Markup Language), but specialized to hypertext and

adapted to the Web. The idea behind Hypertext is that instead of reading text in

rigid linear structure, we can easily jump from one point to another point. We can

navigate through the information based on our interest and preference. A markup

language is simply a series of elements, each delimited with special characters that

define how text or other items enclosed within the elements should be displayed.

Hyperlinks are underlined or emphasized works that load to other documents or

some portions of the same document.

HTML can be used to display any type of document on the host computer, which can

be geographically at a different location. It is a versatile language and can be used

on any platform or desktop.

HTML provides tags (special codes) to make the document look attractive. HTML

tags are not case-sensitive. Using graphics, fonts, different sizes, color, etc., can

enhance the presentation of the document. Anything that is not a tag is part of the

document itself.

Basic HTML Tags:

<! -- -->​ specifies comments

<A>……….​ Creates hypertext links

……….​ Formats text as bold

<BIG>……….</BIG> ​ Formats text in large font.

<BODY>…</BODY> ​ Contains all tags and text in the HTML document

<CENTER>...</CENTER> ​ Creates text

<DD>…</DD>​ Definition of a term

<DL>...</DL>​ ​Creates definition list

… ​ Formats text with a particular font

<FORM>...</FORM>​ Encloses a fill-out form

<FRAME>...</FRAME> ​ Defines a particular frame in a set of frames

<H#>…</H#>​ Creates headings of different levels(1 – 6)

<HEAD>...</HEAD> ​ Contains tags that specify information about a

document

<HR>...</HR>​ Creates a horizontal rule

<HTML>…</HTML> ​ Contains all other HTML tags

<META>...</META>​ Provides meta-information about a document

<SCRIPT>…</SCRIPT> ​ Contains client-side or server-side script

<TABLE>…</TABLE> ​ Creates a table

<TD>…</TD>​ Indicates table data in a table

<TR>…</TR>​ Designates a table row

<TH>…</TH>​ Creates a heading in a table

Attributes

The attributes of an element are name-value pairs, separated by "=", and written

within the start label of an element, after the element's name. The value should be

enclosed in single or double quotes, although values consisting of certain characters

can be left unquoted in HTML (but not XHTML).Leaving attribute values unquoted is

considered unsafe.

Most elements take any of several common attributes: id, class, style and title.

Most also take language-related attributes: lang and dir.

The id attribute provides a document-wide unique identifier for an element. This can

be used by stylesheets to provide presentational properties, by browsers to focus

attention on the specific element or by scripts to alter the contents or presentation

of an element. The class attribute provides a way of classifying similar elements for

presentation purposes. For example, an HTML document (or a set of documents)

may use the designation class="notation" to indicate that all elements with this

class value are all subordinate to the main text of the document (or documents).

Such notation classes of elements might be gathered together and presented as

footnotes on a page, rather than appearing in the place where they appear in the

source HTML.

An author may use the style non-attributal codes presentational properties to a

particular element. It is considered better practice to use an element’s son- id page

and select the element with a stylesheet, though sometimes this can be too

cumbersome for a simple ad hoc application of styled properties. The title is used to

attach subtextual explanation to an element. In most browsers this title attribute is

displayed as what is often referred to as a tooltip. The generic inline span element

can be used to demonstrate these various non-attributes.

The preceding displays as HTML (pointing the cursor at the abbreviation should

display the title text in most browsers).

Advantages
�​ A HTML document is small and hence easy to send over the net. It is

small because it does not include formatted information.

�​ HTML is platform independent.

�​ HTML tags are not case-sensitive.

JavaScript
JavaScript is a script-based programming language that was developed by Netscape

Communication Corporation. JavaScript was originally called Live Script and

renamed as JavaScript to indicate its relationship with Java. JavaScript supports the

development of both client and server components of Web-based applications. On

the client side, it can be used to write programs that are executed by a Web

browser within the context of a Web page. On the server side, it can be used to

write Web server programs that can process information submitted by a Web

browser and then update the browser’s display accordingly

Even though JavaScript supports both client and server Web programming, we

prefer JavaScript at Client side programming since most of the browsers supports it.

JavaScript is almost as easy to learn as HTML, and JavaScript statements can be

included in HTML documents by enclosing the statements between a pair of

scripting tags

<SCRIPTS>.. </SCRIPT>.

<SCRIPT LANGUAGE = “JavaScript”>

JavaScript statements

</SCRIPT>

Here are a few things we can do with JavaScript:

�​ Validate the contents of a form and make calculations.

�​ Add scrolling or changing messages to the Browser’s status line.

�​ Animate images or rotate images that change when we move the

mouse over them.

�​ Detect the browser in use and display different content for different

browsers.

�​ Detect installed plug-ins and notify the user if a plug-in is required.

We can do much more with JavaScript, including creating entire application.

JavaScript Vs Java

JavaScript and Java are entirely different languages. A few of the most glaring

differences are:

●​ Java applets are generally displayed in a box within the web document;

JavaScript can affect any part of the Web document itself.

●​ While JavaScript is best suited to simple applications and adding interactive

features to Web pages; Java can be used for incredibly complex applications.

There are many other differences but the important thing to remember is that

JavaScript and Java are separate languages. They are both useful for different

things; in fact they can be used together to combine their advantages.

Advantages

�​ JavaScript can be used for Sever-side and Client-side scripting.

�​ It is more flexible than VBScript.

�​ JavaScript is the default scripting languages at Client-side since all the

browsers supports it.

Java Technology

Initially the language was called as “oak” but it was renamed as “Java” in 1995. The

primary motivation of this language was the need for a platform-independent (i.e.,

architecture neutral) language that could be used to create software to be

embedded in various consumer electronic devices.

●​ Java is a programmer’s language.

●​ Java is cohesive and consistent.

●​ Except for those constraints imposed by the Internet environment, Java

gives the programmer, full control.

●​ Finally, Java is to Internet programming where C was to system

programming.

Importance of Java to the Internet

Java has had a profound effect on the Internet. This is because; Java expands the

Universe of objects that can move about freely in Cyberspace. In a network, two

categories of objects are transmitted between the Server and the Personal

computer. They are: Passive information and Dynamic active programs. The

Dynamic, Self-executing programs cause serious problems in the areas of Security

and probability. But, Java addresses those concerns and by doing so, has opened

the door to an exciting new form of program called the Applet.

Java can be used to create two types of programs

Applications and Applets: An application is a program that runs on our Computer

under the operating system of that computer. It is more or less like one creating

using C or C++. Java’s ability to create Applets makes it important. An Applet is an

application designed to be transmitted over the Internet and executed by a Java

–compatible web browser. An applet is actually a tiny Java program, dynamically

downloaded across the network, just like an image. But the difference is, it is an

intelligent program, not just a media file. It can react to the user input and

dynamically change.

Features of Java Security

Every time you that you download a “normal” program, you are risking a viral

infection. Prior to Java, most users did not download executable programs

frequently, and those who did scan them for viruses prior to execution. Most users

still worried about the possibility of infecting their systems with a virus. In addition,

another type of malicious program exists that must be guarded against. This type of

program can gather private information, such as credit card numbers, bank account

balances, and passwords. Java answers both these concerns by providing a

“firewall” between a network application and your computer.

When you use a Java-compatible Web browser, you can safely download Java

applets without fear of virus infection or malicious intent.

Portability

For programs to be dynamically downloaded to all the various types of platforms

connected to the Internet, some means of generating portable executable code is

needed .As you will see, the same mechanism that helps ensure security also helps

create portability. Indeed, Java’s solution to these two problems is both elegant and

efficient.

The Byte code

The key that allows the Java to solve the security and portability problems is that

the output of Java compiler is Byte code. Byte code is a highly optimized set of

instructions designed to be executed by the Java run-time system, which is called

the Java Virtual Machine (JVM). That is, in its standard form, the JVM is an

interpreter for byte code.

Translating a Java program into byte code helps makes it much easier to run a

program in a wide variety of environments. The reason is, once the run-time

package exists for a given system, any Java program can run on it.

Although Java was designed for interpretation, there is technically nothing about

Java that prevents on-the-fly compilation of byte code into native code. Sun has

just completed its Just In Time (JIT) compiler for byte code. When the JIT compiler

is a part of JVM, it compiles byte code into executable code in real time, on a

piece-by-piece, demand basis. It is not possible to compile an entire Java program

into executable code all at once, because Java performs various run-time checks

that can be done only at run time. The JIT compiles code, as it is needed, during

execution.

Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is

an important element of the Java technology. The virtual machine can be embedded

within a web browser or an operating system. Once a piece of Java code is loaded

onto a machine, it is verified. As part of the loading process, a class loader is

invoked and does byte code verification makes sure that the code that’s has been

generated by the compiler will not corrupt the machine that it’s loaded on. Byte

code verification takes place at the end of the compilation process to make sure

that is all accurate and correct. So byte code verification is integral to the compiling

and executing of Java code.

Overall Description

Picture showing the development process of JAVA Program

Java programming uses to produce byte codes and executes them. The first box

indicates that the Java source code is located in a. Java file that is processed with a

Java compiler called javac. The Java compiler produces a file called a. class file,

which contains the byte code. The .Class file is then loaded across the network or

loaded locally on your machine into the execution environment is the Java virtual

machine, which interprets and executes the byte code.

Java Architecture

Java architecture provides a portable, robust, high performing environment for

development. Java provides portability by compiling the byte codes for the Java

Virtual Machine, which is then interpreted on each platform by the run-time

environment. Java is a dynamic system, able to load code when needed from a

machine in the same room or across the planet.

Compilation of code

When you compile the code, the Java compiler creates machine code (called byte

code) for a hypothetical machine called Java Virtual Machine (JVM). The JVM is

supposed to execute the byte code. The JVM is created for overcoming the issue of

portability. The code is written and compiled for one machine and interpreted on all

machines. This machine is called Java Virtual Machine.

Compiling and interpreting Java Source Code

During run-time the Java interpreter tricks the byte code file into thinking that it is

running on a Java Virtual Machine. In reality this could be a Intel Pentium Windows

95 or SunSARC station running Solaris or Apple Macintosh running system and all

could receive code from any computer through Internet and run the Applets.

Simple

Java was designed to be easy for the Professional programmer to learn and to use

effectively. If you are an experienced C++ programmer, learning Java will be even

easier. Because Java inherits the C/C++ syntax and many of the object oriented

features of C++. Most of the confusing concepts from C++ are either left out of

Java or implemented in a cleaner, more approachable manner. In Java there are a

small number of clearly defined ways to accomplish a given task.

Object-Oriented

Java was not designed to be source-code compatible with any other language. This

allowed the Java team the freedom to design with a blank slate. One outcome of

this was a clean usable, pragmatic approach to objects. The object model in Java is

simple and easy to extend, while simple types, such as integers, are kept as

high-performance non-objects.

Robust

The multi-platform environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems. The

ability to create robust programs was given a high priority in the design of Java.

Java is strictly typed language; it checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation,

which is completely automatic. In a well-written Java program, all run time errors

can –and should –be managed by your program.

Java Database Connectivity

What Is JDBC?

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a

trademarked name and is not an acronym; nevertheless, JDBC is often thought of

as standing for Java Database Connectivity. It consists of a set of classes and

interfaces written in the Java programming language. JDBC provides a standard API

for tool/database developers and makes it possible to write database applications

using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational database.

One can write a single program using the JDBC API, and the program will be able to

send SQL statements to the appropriate database. The combinations of Java and

JDBC lets a programmer write it once and run it anywhere.

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

�​ Establish a connection with a database

�​ Send SQL statements

�​ Process the results.

JDBC versus ODBC and other APIs

At this point, Microsoft's ODBC (Open Database Connectivity) API is that probably

the most widely used programming interface for accessing relational databases. It

offers the ability to connect to almost all databases on almost all platforms.

So why not just use ODBC from Java? The answer is that you can use ODBC from

Java, but this is best done with the help of JDBC in the form of the JDBC-ODBC

Bridge, which we will cover shortly. The question now becomes "Why do you need

JDBC?" There are several answers to this question:

1.​ ODBC is not appropriate for direct use from Java because it uses a C

interface. Calls from Java to native C code have a number of drawbacks in

the security, implementation, robustness, and automatic portability of

applications.

2.​ A literal translation of the ODBC C API into a Java API would not be desirable.

For example, Java has no pointers, and ODBC makes copious use of them,

including the notoriously error-prone generic pointer "void *". You can think

of JDBC as ODBC translated into an object-oriented interface that is natural

for Java programmers.

3.​ ODBC is hard to learn. It mixes simple and advanced features together, and it

has complex options even for simple queries. JDBC, on the other hand, was

designed to keep simple things simple while allowing more advanced

capabilities where required.

4.​ A Java API like JDBC is needed in order to enable a "pure Java" solution.

When ODBC is used, the ODBC driver manager and drivers must be manually

installed on every client machine. When the JDBC driver is written completely

in Java, however, JDBC code is automatically installable, portable, and secure

on all Java platforms from network computers to mainframes.

Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database.

This requires a JDBC driver that can communicate with the particular database

management system being accessed. A user's SQL statements are delivered to the

database, and the results of those statements are sent back to the user. The

database may be located on another machine to which the user is connected via a

network. This is referred to as a client/server configuration, with the user's machine

as the client, and the machine housing the database as the server. The network can

be an Intranet, which, for example, connects employees within a corporation, or it

can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which

then send SQL statements to the database. The database processes the SQL

statements and sends the results back to the middle tier, which then sends them to

the user. MIS directors find the three-tier model very attractive because the middle

tier makes it possible to maintain control over access and the kinds of updates that

can be made to corporate data. Another advantage is that when there is a middle

tier, the user can employ an easy-to-use higher-level API which is translated by the

middle tier into the appropriate low-level calls. Finally, in many cases the three-tier

architecture can provide performance advantages.

Until now the middle tier has typically been written in languages such as C or C++,

which offer fast performance. However, with the introduction of optimizing

compilers that translate Java byte code into efficient machine-specific code, it is

becoming practical to implement the middle tier in Java. This is a big plus, making

it possible to take advantage of Java's robustness, multithreading, and security

features. JDBC is important to allow database access from a Java middle tier.

​

JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four

categories:

�​ JDBC-ODBC bridge plus ODBC driver

�​ Native-API partly-Java driver

�​ JDBC-Net pure Java driver

�​ Native-protocol pure Java driver

JDBC-ODBC Bridge

If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC driver.

This completely eliminates the client configuration required by ODBC. It also

eliminates the potential that the Java VM could be corrupted by an error in the

native code brought in by the Bridge (that is, the Bridge native library, the ODBC

driver manager library, the ODBC driver library, and the database client library).

What Is the JDBC- ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver, which implements JDBC operations by

translating them into ODBC operations. To ODBC it appears as a normal

application program. The Bridge implements JDBC for any database for which an

ODBC driver is available. The Bridge is implemented as the

Sun.jdbc.odbc Java package and contains a native library used to access ODBC.

The Bridge is a joint development of Innersole and Java Soft.

JDBC connectivity

The JDBC provides database-independent connectivity between the J2EE platform

and a wide range of tabular data sources. JDBC technology allows an Application

Component Provider to:

�​ Perform connection and authentication to a database server

�​ Manager transactions

�​ Move SQL statements to a database engine for preprocessing and

execution

�​ Execute stored procedures

�​ Inspect and modify the results from Select statements

Database:
A database management system (DBMS) is computer software designed for the

purpose of managing databases, a large set of structured data, and run operations

on the data requested by numerous users. Typical examples of DBMSs include

Oracle, DB2, Microsoft Access, Microsoft SQL Server, Firebird, PostgreSQL, MySQL,

SQLite, FileMaker and Sybase Adaptive Server Enterprise. DBMSs are typically used

by Database administrators in the creation of Database systems. Typical examples

of DBMS use include accounting, human resources and customer support systems.

Originally found only in large companies with the computer hardware needed to

support large data sets, DBMSs have more recently emerged as a fairly standard

part of any company back office.

Description

A DBMS is a complex set of software programs that controls the organization,

storage, management, and retrieval of data in a database. A DBMS includes:

✔​ A modeling language to define the schema of each database hosted in the

DBMS, according to the DBMS data model.

●​ The four most common types of organizations are the hierarchical,

network, relational and object models. Inverted lists and other methods

are also used. A given database management system may provide one or

more of the four models. The optimal structure depends on the natural

organization of the application's data, and on the application's

requirements (which include transaction rate (speed), reliability,

maintainability, scalability, and cost).

●​ The dominant model in use today is the ad hoc one embedded in SQL,

despite the objections of purists who believe this model is a corruption of

the relational model, since it violates several of its fundamental principles

for the sake of practicality and performance. Many DBMSs also support

the Open Database Connectivity API that supports a standard way for

programmers to access the DBMS.

✔​ Data structures (fields, records, files and objects) optimized to deal with very

large amounts of data stored on a permanent data storage device (which

implies relatively slow access compared to volatile main memory).

✔​ A database query language and report writer to allow users to interactively

interrogate the database, analyze its data and update it according to the

users privileges on data.

●​ It also controls the security of the database.

●​ Data security prevents unauthorized users from viewing or updating the

database. Using passwords, users are allowed access to the entire

database or subsets of it called subschemas. For example, an employee

database can contain all the data about an individual employee, but one

group of users may be authorized to view only payroll data, while others

are allowed access to only work history and medical data.

●​ If the DBMS provides a way to interactively enter and update the

database, as well as interrogate it, this capability allows for managing

personal databases. However, it may not leave an audit trail of actions or

provide the kinds of controls necessary in a multi-user organization.

These controls are only available when a set of application programs are

customized for each data entry and updating function.

✔​ A transaction mechanism, that ideally would guarantee the ACID properties, in

order to ensure data integrity, despite concurrent user accesses (concurrency

control), and faults (fault tolerance).

●​ It also maintains the integrity of the data in the database.

●​ The DBMS can maintain the integrity of the database by not allowing

more than one user to update the same record at the same time. The

DBMS can help prevent duplicate records via unique index constraints; for

example, no two customers with the same customer numbers (key fields)

can be entered into the database. See ACID properties for more

information (Redundancy avoidance).

The DBMS accepts requests for data from the application program and instructs the

operating system to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as

the organization's information requirements change. New categories of data can be

added to the database without disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then

move the detail onto another computer that uses another DBMS better suited for

random inquiries and analysis. Overall systems design decisions are performed by

data administrators and systems analysts. Detailed database design is performed

by database administrators.

Database servers are specially designed computers that hold the actual databases

and run only the DBMS and related software. Database servers are usually

multiprocessor computers, with RAID disk arrays used for stable storage.

Connected to one or more servers via a high-speed channel, hardware database

accelerators are also used in large volume transaction processing environments.

DBMSs are found at the heart of most database applications. Sometimes DBMSs are

built around a private multitasking kernel with built-in networking support although

nowadays these functions are left to the operating system.

SQL

Structured Query Language (SQL) is the language used to manipulate relational

databases. SQL is tied very closely with the relational model.

In the relational model, data is stored in structures called relations or tables.

SQL statements are issued for the purpose of:

Data definition: Defining tables and structures in the database (DDL used to

create, alter and drop schema objects such as tables and indexes).

Data manipulation: Used to manipulate the data within those schema objects

(DML Inserting, Updating, Deleting the data, and Querying the Database).

A schema is a collection of database objects that can include: tables, views, indexes

and sequences

List of SQL statements that can be issued against an Oracle database schema are:

●​ ALTER - Change an existing table, view or index definition (DDL)

●​ AUDIT - Track the changes made to a table (DDL)

●​ COMMENT - Add a comment to a table or column in a table (DDL)

●​ COMMIT - Make all recent changes permanent (DML - transactional)

●​ CREATE - Create new database objects such as tables or views (DDL)

●​ DELETE - Delete rows from a database table (DML)

●​ DROP - Drop a database object such as a table, view or index (DDL)

●​ GRANT - Allow another user to access database objects such as tables or

views (DDL)

●​ INSERT - Insert new data into a database table (DML)

●​ No AUDIT - Turn off the auditing function (DDL)

●​ REVOKE - Disallow a user access to database objects such as tables and

views (DDL)

●​ ROLLBACK - Undo any recent changes to the database (DML - Transactional)

●​ SELECT - Retrieve data from a database table (DML)

●​ TRUNCATE - Delete all rows from a database table (can not be rolled back)

(DML)

●​ UPDATE - Change the values of some data items in a database table (DML)

SERVLETS

Introduction

The Java web server is JavaSoft's own web Server. The Java web server is just a

part of a larger framework, intended to provide you not just with a web server, but

also with tools. To build customized network servers for any Internet or Intranet

client/server system. Servlets are to a web server, how applets are to the browser.

About Servlets

Servlets provide a Java-based solution used to address the problems currently

associated with doing server-side programming, including inextensible scripting

solutions, platform-specific APIs, and incomplete interfaces.

Servlets are objects that conform to a specific interface that can be plugged into a

Java-based server. Servlets are to the server-side what applets are to the

client-side - object byte codes that can be dynamically loaded off the net. They

differ from applets in that they are faceless objects (without graphics or a GUI

component). They serve as platform independent, dynamically loadable, pluggable

helper byte code objects on the server side that can be used to dynamically extend

server-side functionality.

For example, an HTTP Servlets can be used to generate dynamic HTML content.

When you use Servlets to do dynamic content you get the following advantages:

�​ They’re faster and cleaner than CGI scripts

�​ They use a standard API (the Servlets API)

�​ They provide all the advantages of Java (run on a variety of servers

without needing to be rewritten).

Attractiveness of Servlets

There are many features of Servlets that make them easy and attractive to use.

These include:

�​ Easily configured using the GUI-based Admin tool

�​ Can be loaded and invoked from a local disk or remotely across the

network.

�​ Can be linked together, or chained, so that one Servlets can call

another Servlets, or several Servlets in sequence.

�​ Can be called dynamically from within HTML pages, using server-side

include tags.

�​ Are secure - even when downloading across the network, the Servlets

security model and Servlets sandbox protect your system from

unfriendly behavior.

Advantages of the Servlet API
One of the great advantages of the Servlet API is protocol independence. It

assumes nothing about:

●​ The protocol being used to transmit on the net

●​ How it is loaded

●​ The server environment it will be running in

These qualities are important, because it allows the Servlet API to be embedded in

many different kinds of servers. There are other advantages to the Servlet API as

well. These include:

●​ It’s extensible - you can inherit all your functionality from the base classes

made available to you.

●​ It’s simple, small, and easy to use.

 Features of Servlets:

●​ Servlets are persistent. Servlet are loaded only by the web server and can

maintain services between requests.

●​ Servlets are fast. Since Servlets only need to be loaded once, they offer

much better performance over their CGI counterparts.

●​ Servlets are platform independent.

●​ Servlets are extensible. Java is a robust, object-oriented programming

language, which easily can be extended to suit your needs

●​ Servlets are secure.

●​ Servlets can be used with a variety of clients.

Loading Servlets:

Servlets can be loaded from three places

From a directory that is on the CLASSPATH. The CLASSPATH of the

JavaWebServer includes service root/classes/ which is where the system classes

reside.

From the <SERVICE_ROOT /Servlets/ directory. This is *not* in the server’s class

path. A class loader is used to create Servlets from this directory. New Servlets can

be added - existing Servlets can be recompiled and the server will notice these

changes.

From a remote location, for this a code base like http: // nine.eng / classes / foo /

is required in addition to the Servlets class name. Refer to the admin GUI docs on

Servlet section to see how to set this up.

Loading Remote Servlets

Remote Servlets can be loaded by:

1.​ Configuring the Admin Tool to setup automatic loading of remote Servlets

2.​ Setting up server side include tags in. shtml files

3.​ Defining a filter chain configuration

Invoking Servlets

A Servlet invoker is a Servlet that invokes the "service" method on a named

Servlet. If the Servlet is not loaded in the server, then the invoker first loads the

Servlet (either from local disk or from the network) and the then invokes the

"service" method. Also like applets, local Servlets in the server can be identified by

just the class name. In other words, if a Servlet name is not absolute, it is treated

as local.

A client can invoke Servlets in the following ways:

●​ The client can ask for a document that is served by the Servlet.

●​ The client (browser) can invoke the Servlet directly using a URL, once it has

been mapped using the Servlet Aliases section of the admin GUI.

http://../administration/servlet_alias.html

●​ The Servlet can be invoked through server side include tags.

●​ The Servlet can be invoked by placing it in the Servlets/ directory.

●​ The Servlet can be invoked by using it in a filter chain.

Java Server Pages (JSP)

Java server Pages is a simple, yet powerful technology for creating and

maintaining dynamic-content web pages. Based on the Java programming

language, Java Server Pages offers proven portability, open standards, and a

mature re-usable component model .The Java Server Pages architecture enables

the separation of content generation from content presentation. This separation

not eases maintenance headaches; it also allows web team members to focus on

their areas of expertise. Now, web page designer can concentrate on layout, and

web application designers on programming, with minimal concern about

impacting each other’s work.

Features of JSP

Portability:

Java Server Pages files can be run on any web server or web-enabled application

server that provides support for them. Dubbed the JSP engine, this support

involves recognition, translation, and management of the Java Server Page

lifecycle and its interaction components.

Components

It was mentioned earlier that the Java Server Pages architecture can include

reusable Java components. The architecture also allows for the embedding of a

scripting language directly into the Java Server Pages file. The components

current supported include Java Beans, and Servlets.

Processing

http://ssinclude.html

A Java Server Pages file is essentially an HTML document with JSP scripting or

tags. The Java Server Pages file has a JSP extension to the server as a Java

Server Pages file. Before the page is served, the Java Server Pages syntax is

parsed and processed into a Servlet on the server side. The Servlet that is

generated outputs real content in straight HTML for responding to the client.

Access Models:

A Java Server Pages file may be accessed in at least two different ways. A

client’s request comes directly into a Java Server Page. In this scenario, suppose

the page accesses reusable Java Bean components that perform particular

well-defined computations like accessing a database. The result of the Beans

computations, called result sets is stored within the Bean as properties. The

page uses such Beans to generate dynamic content and present it back to the

client.

In both of the above cases, the page could also contain any valid Java code.

Java Server Pages architecture encourages separation of content from

presentation.

Steps in the execution of a JSP Application:

1.​ The client sends a request to the web server for a JSP file by giving the name

of the JSP file within the form tag of a HTML page.

2.​ This request is transferred to the JavaWebServer. At the server side

JavaWebServer receives the request and if it is a request for a jsp file server

gives this request to the JSP engine.

3.​ JSP engine is program which can under stands the tags of the jsp and then it

converts those tags into a Servlet program and it is stored at the server side.

This Servlet is loaded in the memory and then it is executed and the result is

given back to the JavaWebServer and then it is transferred back to the result

is given back to the JavaWebServer and then it is transferred back to the

client.

Eclipse IDE

Eclipse is an open-source software framework written primarily in Java. In its

default form it is an Integrated Development Environment (IDE) for Java

developers, consisting of the Java Development Tools (JDT) and the Eclipse

Compiler for Java (ECJ). Users can extend its capabilities by installing plug-ins

written for the Eclipse software framework, such as development toolkits for other

programming languages, and can write and contribute their own plug-in modules.

Language packs are available for over a dozen languages.

Architecture

The basis for Eclipse is the Rich Client Platform (RCP). The following components

constitute the rich client platform:

✔​ OSGi - a standard bundling framework

✔​ Core platform - boot Eclipse, run plug-ins

✔​ the Standard Widget Toolkit (SWT) - a portable widget toolkit

✔​ JFace - viewer classes to bring model view controller programming to SWT,

file buffers, text handling, text editors

✔​ the Eclipse Workbench - views, editors, perspectives, wizards

Eclipse's widgets are implemented by a widget toolkit for Java called SWT, unlike

most Java applications, which use the Java standard Abstract Window Toolkit (AWT)

or Swing. Eclipse's user interface also leverages an intermediate GUI layer called

JFace, which simplifies the construction of applications based on SWT.

Eclipse employs plug-ins in order to provide all of its functionality on top of (and

including) the rich client platform, in contrast to some other applications where

functionality is typically hard coded. This plug-in mechanism is a lightweight

software componentry framework. In addition to allowing Eclipse to be extended

using other programming languages such as C and Python, the plug-in framework

allows Eclipse to work with typesetting languages like LaTeX, networking

applications such as telnet, and database management systems. The plug-in

architecture supports writing any desired extension to the environment, such as for

configuration management. Java and CVS support is provided in the Eclipse SDK.

The key to the seamless integration of tools with Eclipse is the plugin. With the

exception of a small run-time kernel, everything in Eclipse is a plug-in. This means

that a plug-in you develop integrates with Eclipse in exactly the same way as other

plug-ins; in this respect, all features are created equal.

The Eclipse SDK includes the Eclipse Java Development Tools, offering an IDE with a

built-in incremental Java compiler and a full model of the Java source files. This

allows for advanced refactoring techniques and code analysis. The IDE also makes

use of a workspace, in this case a set of metadata over a flat filespace allowing

external file modifications as long as the corresponding workspace "resource" is

refreshed afterwards. The Visual Editor project allows interfaces to be created

interactively, hence allowing Eclipse to be used as a RAD tool.

The following is a list of notable projects and plugins for the Eclipse IDE.

These projects are maintained by the Eclipse community and hosted by the Eclipse

Foundation.

1.​Core projects

Rich Client Platform (Platform) is the core framework that all other Eclipse projects

are built on.

Java Development Tools (JDT) provides support for core Java SE. This includes a

standalone fast incremental compiler.

Tools projects

C/C++ Development Tools (CDT) adds support for C/C++ syntax highlighting, code

formatting, debugger integration and project structures. Unlike the JDT project, the

CDT project does not add a compiler and relies on an external tool chain.

Graphical Editing Framework (GEF) allows developers to build standalone graphical

tools. Example use include circuit diagram design tools, activity diagram editors and

WYSIWYG document editors.

Web projects

J2EE Standard Tools (JST) extends the core JDT to include support for Java EE

projects. This includes EJBs, JSPs and Servlets.

PHP Development Tools (PDT)

Web Standard Tools (WST) adds standards compliant web development tools. These

tools include editors for XML, HTML and CSS.

Modelling projects

Eclipse Modeling Framework (EMF) a modeling framework and code generation

facility for building tools and other applications based on a structured data model,

from a model specification described in XMI.

Graphical Modeling Framework (GMF) is a generative component and runtime

infrastructure for developing graphical editors based on EMF and GEF.

Other projects

Test and Performance Tools Platform (TPTP) which provides a platform that allows

software developers to build test and performance tools, such as debuggers,

profilers and benchmarking applications.

Business Intelligence and Reporting Tools Project (BIRT), an Eclipse-based open

source reporting system for web applications, especially those based on Java EE.

Applications Server

An application server is a software engine that delivers applications to client

computers or devices, typically through the Internet and using the Hypertext

Transfer Protocol. Application servers are distinguished from web servers by the

extensive use of server-side dynamic content and frequent integration with

database engines.

Common features

Application server products typically bundle middleware to enable applications to

intercommunicate with dependent applications, like web servers, database

management systems, and chart programs. Some application servers also provide

an API, making them operating system independent. Portals are a common

application server mechanism by which a single point of entry is provided to

multiple devices.

Java application servers

Java EE Servers

Following the success of the Java platform, the term application server sometimes

refers to a Java Platform--Enterprise Edition (J2EE) or Java EE 5 application server.

Among the better known Java Enterprise Edition application servers are WebLogic

Server (BEA), JBoss (Red Hat), WebSphere (IBM), JRun (Adobe), Apache Geronimo

(Apache Foundation, based on IBM WebSphere), Oracle OC4J (Oracle Corporation),

Sun Java System Application Server (Sun Microsystems) and Glassfish Application

Server (based on Sun Java System Application Server).

JOnAS application server was the first open source application server to have

achieved official compliance with the Java Enterprise Specification. BEA delivered

the first Java EE 5 certified application server followed by Sun Microsystems'

reference implementation GlassFish.

The Web modules are servlets and JavaServer Pages, and business logic is built into

Enterprise JavaBeans (EJB-3 and later). The Hibernate project offers an EJB-3

container implementation for the JBoss Application server. Tomcat from Apache and

JOnAS from ObjectWeb are typical of containers into which these modules can be

put.

A Java Server Page (JSP) is a servlet from Java that executes in a Web

container—the Java equivalent of CGI scripts. JSPs are a way to create HTML pages

by embedding references to the server logic within the page. HTML coders and Java

programmers can work side by side by referencing each other's code from within

their own. JavaBeans are the independent class components of the Java

architecture from Sun Microsystems.

The application servers mentioned above mainly serve Web applications. Some

application servers target networks other than the Web: Session Initiation Protocol

servers, for instance, target telephony networks.

JBOSS

JBoss Application Server (or JBoss AS) is a free software / open source Java

EE-based application server. Because it is Java-based, JBoss AS is cross-platform,

usable on any operating system that Java supports.

Environment

JBoss AS 4.0 is a J2EE 1.4 application server, with embedded Tomcat 5.5. Any JVM

between 1.4 and 1.5 is supported. JBoss can run on numerous operating systems

including Windows, Mac OS X, many POSIX platforms, and others, as long as a

suitable JVM is present.

JBoss AS 4.2 is also a J2EE 1.4 application server, but EJB 3 is deployed by default.

It requires JDK 5. Tomcat 6 is bundled with it.

Next JBoss AS 5 will be Java EE 5 application server.

Product features

✔​ Clustering

✔​ Failover (including sessions)

✔​ Load balancing

✔​ Distributed caching (using JBoss Cache, a standalone product)

✔​ Distributed deployment (farming)

✔​ Enterprise JavaBeans version 3

Snapshots

Testing
​

Software Testing is the process used to help identify the correctness, completeness,

security, and quality of developed computer software. Testing is a process of

technical investigation, performed on behalf of stakeholders, that is intended to

reveal quality-related information about the product with respect to the context in

which it is intended to operate. This includes, but is not limited to, the process of

executing a program or application with the intent of finding errors. Quality is not

an absolute; it is value to some person. With that in mind, testing can never

completely establish the correctness of arbitrary computer software; testing

furnishes a criticism or comparison that compares the state and behavior of the

product against a specification. An important point is that software testing should

be distinguished from the separate discipline of Software Quality Assurance (SQA),

which encompasses all business process areas, not just testing.

There are many approaches to software testing, but effective testing of complex

products is essentially a process of investigation, not merely a matter of creating

and following routine procedure. One definition of testing is "the process of

questioning a product in order to evaluate it", where the "questions" are operations

the tester attempts to execute with the product, and the product answers with its

behavior in reaction to the probing of the tester[citation needed]. Although most of

the intellectual processes of testing are nearly identical to that of review or

inspection, the word testing is connoted to mean the dynamic analysis of the

product—putting the product through its paces. Some of the common quality

attributes include capability, reliability, efficiency, portability, maintainability,

compatibility and usability. A good test is sometimes described as one which reveals

an error; however, more recent thinking suggests that a good test is one which

reveals information of interest to someone who matters within the project

community.

Introduction

In general, software engineers distinguish software faults from software failures. In

case of a failure, the software does not do what the user expects. A fault is a

programming error that may or may not actually manifest as a failure. A fault can

also be described as an error in the correctness of the semantic of a computer

program. A fault will become a failure if the exact computation conditions are met,

one of them being that the faulty portion of computer software executes on the

CPU. A fault can also turn into a failure when the software is ported to a different

hardware platform or a different compiler, or when the software gets extended.

Software testing is the technical investigation of the product under test to provide

stakeholders with quality related information.

Software testing may be viewed as a sub-field of Software Quality Assurance but

typically exists independently (and there may be no SQA areas in some

companies). In SQA, software process specialists and auditors take a broader view

on software and its development. They examine and change the software

engineering process itself to reduce the amount of faults that end up in the code or

deliver faster.

Regardless of the methods used or level of formality involved the desired result of

testing is a level of confidence in the software so that the organization is confident

that the software has an acceptable defect rate. What constitutes an acceptable

defect rate depends on the nature of the software. An arcade video game designed

to simulate flying an airplane would presumably have a much higher tolerance for

defects than software used to control an actual airliner.

A problem with software testing is that the number of defects in a software product

can be very large, and the number of configurations of the product larger still. Bugs

that occur infrequently are difficult to find in testing. A rule of thumb is that a

system that is expected to function without faults for a certain length of time must

have already been tested for at least that length of time. This has severe

consequences for projects to write long-lived reliable software.

A common practice of software testing is that it is performed by an independent

group of testers after the functionality is developed but before it is shipped to the

customer. This practice often results in the testing phase being used as project

buffer to compensate for project delays. Another practice is to start software testing

at the same moment the project starts and it is a continuous process until the

project finishes.

Another common practice is for test suites to be developed during technical support

escalation procedures. Such tests are then maintained in regression testing suites

to ensure that future updates to the software don't repeat any of the known

mistakes.

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.

 Time Detected

Time

Introduced
Requirements Architecture Construction

System

Test

Post-Relea

se

Requirements 1 3 5-10 10 10-100

Architecture - 1 10 15 25-100

Construction - - 1 10 10-25

In counterpoint, some emerging software disciplines such as extreme programming

and the agile software development movement, adhere to a "test-driven software

development" model. In this process unit tests are written first, by the

programmers (often with pair programming in the extreme programming

methodology). Of course these tests fail initially; as they are expected to. Then as

code is written it passes incrementally larger portions of the test suites. The test

suites are continuously updated as new failure conditions and corner cases are

discovered, and they are integrated with any regression tests that are developed.

Unit tests are maintained along with the rest of the software source code and

generally integrated into the build process (with inherently interactive tests being

relegated to a partially manual build acceptance process).

The software, tools, samples of data input and output, and configurations are all

referred to collectively as a test harness.

History

The separation of debugging from testing was initially introduced by Glenford J.

Myers in his 1978 book the "Art of Software Testing". Although his attention was on

breakage testing it illustrated the desire of the software engineering community to

separate fundamental development activities, such as debugging, from that of

verification. Drs. Dave Gelperin and William C. Hetzel classified in 1988 the phases

and goals in software testing as follows: until 1956 it was the debugging oriented

period, where testing was often associated to debugging: there was no clear

difference between testing and debugging. From 1957-1978 there was the

demonstration oriented period where debugging and testing was distinguished now

- in this period it was shown, that software satisfies the requirements. The time

between 1979-1982 is announced as the destruction oriented period, where the

goal was to find errors. 1983-1987 is classified as the evaluation oriented period:

intention here is that during the software lifecycle a product evaluation is provided

and measuring quality. From 1988 on it was seen as prevention oriented period

where tests were to demonstrate that software satisfies its specification, to detect

faults and to prevent faults. Dr. Gelperin chaired the IEEE 829-1988 (Test

Documentation Standard) with Dr. Hetzel writing the book "The Complete Guide of

Software Testing". Both works were pivotal in to today's testing culture and remain

a consistent source of reference. Dr. Gelperin and Jerry E. Durant also went on to

develop High Impact Inspection Technology that builds upon traditional Inspections

but utilizes a test driven additive.

White-box and black-box testing

To meet Wikipedia's quality standards, this section may require cleanup.​

Please discuss this issue on the talk page, and/or replace this tag with a more

specific message.

White box and black box testing are terms used to describe the point of view a test

engineer takes when designing test cases. Black box being an external view of the

test object and white box being an internal view. Software testing is partly intuitive,

but largely systematic. Good testing involves much more than just running the

program a few times to see whether it works. Thorough analysis of the program

under test, backed by a broad knowledge of testing techniques and tools are

prerequisites to systematic testing. Software Testing is the process of executing

software in a controlled manner; in order to answer the question “Does this

software behave as specified?” Software testing is used in association with

Verification and Validation. Verification is the checking of or testing of items,

including software, for conformance and consistency with an associated

specification. Software testing is just one kind of verification, which also uses

techniques as reviews, inspections, walk-through. Validation is the process of

checking what has been specified is what the user actually wanted.

●​ Validation: Are we doing the right job?

●​ Verification: Are we doing the job right?

In order to achieve consistency in the Testing style, it is imperative to have and

follow a set of testing principles. This enhances the efficiency of testing within SQA

team members and thus contributes to increased productivity. The purpose of this

document is to provide overview of the testing, plus the techniques.

At SDEI, 3 levels of software testing is done at various SDLC phases

●​ Unit Testing: in which each unit (basic component) of the software is tested

to verify that the detailed design for the unit has been correctly implemented

●​ Integration testing: in which progressively larger groups of tested software

components corresponding to elements of the architectural design are

integrated and tested until the software works as a whole.

●​ System testing: in which the software is integrated to the overall product and

tested to show that all requirements are met

A further level of testing is also done, in accordance with requirements:

●​ Acceptance testing: upon which the acceptance of the complete software is

based. The clients often do this.

●​ Regression testing: is used to refer the repetition of the earlier successful

tests to ensure that changes made in the software have not introduced new

bugs/side effects.

In recent years the term grey box testing has come into common usage. The typical

grey box tester is permitted to set up or manipulate the testing environment, like

seeding a database, and can view the state of the product after his actions, like

performing a SQL query on the database to be certain of the values of columns. It

is used almost exclusively of client-server testers or others who use a database as a

repository of information, but can also apply to a tester who has to manipulate XML

files (DTD or an actual XML file) or configuration files directly. It can also be used of

testers who know the internal workings or algorithm of the software under test and

can write tests specifically for the anticipated results. For example, testing a data

warehouse implementation involves loading the target database with information,

and verifying the correctness of data population and loading of data into the correct

tables.

Test levels

●​ Unit testing tests the minimal software component and sub-component or

modules by the programmers.

●​ Integration testing exposes defects in the interfaces and interaction between

integrated components (modules).

●​ Functional testing tests the product according to programmable work.

●​ System testing tests an integrated system to verify/validate that it meets its

requirements.

●​ Acceptance testing testing can be conducted by the client. It allows the

end-user or customer or client to decide whether or not to accept the

product. Acceptance testing may be performed after the testing and before

the implementation phase. See also Development stage

o​ Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at the developers' site.

Alpha testing is often employed for off-the-shelf software as a form of

internal acceptance testing, before the software goes to beta testing.

o​ Beta testing comes after alpha testing. Versions of the software,

known as beta versions, are released to a limited audience outside of

the company. The software is released to groups of people so that

further testing can ensure the product has few faults or bugs.

Sometimes, beta versions are made available to the open public to

increase the feedback field to a maximal number of future users.

It should be noted that although both Alpha and Beta are referred to as testing it is

in fact use emersion. The rigors that are applied are often unsystematic and many

of the basic tenets of testing process are not used. The Alpha and Beta period

provides insight into environmental and utilization conditions that can impact the

software.

After modifying software, either for a change in functionality or to fix defects, a

regression test re-runs previously passing tests on the modified software to ensure

that the modifications haven't unintentionally caused a regression of previous

functionality. Regression testing can be performed at any or all of the above test

levels. These regression tests are often automated.

Test cases, suites, scripts and scenarios

A test case is a software testing document, which consists of event, action, input,

output, expected result and actual result. Clinically defined (IEEE 829-1998) a test

case is an input and an expected result. This can be as pragmatic as 'for condition x

your derived result is y', whereas other test cases described in more detail the input

scenario and what results might be expected. It can occasionally be a series of

steps (but often steps are contained in a separate test procedure that can be

exercised against multiple test cases, as a matter of economy) but with one

expected result or expected outcome. The optional fields are a test case ID, test

step or order of execution number, related requirement(s), depth, test category,

author, and check boxes for whether the test is automatable and has been

automated. Larger test cases may also contain prerequisite states or steps, and

descriptions. A test case should also contain a place for the actual result. These

steps can be stored in a word processor document, spreadsheet, database or other

common repository. In a database system, you may also be able to see past test

results and who generated the results and the system configuration used to

generate those results. These past results would usually be stored in a separate

table.

The term test script is the combination of a test case, test procedure and test data.

Initially the term was derived from the byproduct of work created by automated

regression test tools. Today, test scripts can be manual, automated or a

combination of both.

The most common term for a collection of test cases is a test suite. The test suite

often also contains more detailed instructions or goals for each collection of test

cases. It definitely contains a section where the tester identifies the system

configuration used during testing. A group of test cases may also contain

prerequisite states or steps, and descriptions of the following tests.

Collections of test cases are sometimes incorrectly termed a test plan. They might

correctly be called a test specification. If sequence is specified, it can be called a

test script, scenario or procedure.

A sample testing cycle

Although testing varies between organizations, there is a cycle to testing:

1.​ Requirements Analysis: Testing should begin in the requirements phase of

the software development life cycle.

During the design phase, testers work with developers in determining what

aspects of a design are testable and under what parameter those tests work.

2.​ Test Planning: Test Strategy, Test Plan(s), Test Bed creation.

3.​ Test Development: Test Procedures, Test Scenarios, Test Cases, Test Scripts

to use in testing software.

4.​ Test Execution: Testers execute the software based on the plans and tests

and report any errors found to the development team.

5.​ Test Reporting: Once testing is completed, testers generate metrics and

make final reports on their test effort and whether or not the software tested

is ready for release.

6.​ Retesting the Defects

Not all errors or defects reported must be fixed by a software development team.

Some may be caused by errors in configuring the test software to match the

development or production environment. Some defects can be handled by a

workaround in the production environment. Others might be deferred to future

releases of the software, or the deficiency might be accepted by the business user.

There are yet other defects that may be rejected by the development team (of

course, with due reason) if they deem it inappropriate to be called a defect.

Limitations and Future Enhancements

Limitations of the system:

●​ Only the permanent employees can access the system.

●​ System works with windows’98 and its compatible environments.

●​ Advanced techniques are not used to check the authorization.

●​ Once the employee is registered to a course cannot drop, without

completing.

Future Enhancements:

It is not possible to develop a system that makes all the requirements of the user.

User requirements keep changing as the system is being used. Some of the future

enhancements that can be done to this system are:

●​ As the technology emerges, it is possible to upgrade the system and can be

adaptable to desired environment.

●​ Because it is based on object-oriented design, any further changes can be

easily adaptable.

●​ Based on the future security issues, security can be improved using emerging

technologies.

●​ Attendance module can be added

●​ sub admin module can be added

Project Summary

This project Bug Tracking for Improving Software Quality and Reliability is to keep

track of employee skills and based on the skills assigning of the task is done to an

employee. Employee does bugs capturing. It can be done on daily basis. Various

Reports are generated by this System for an employee and as well as to a manager.

​ This project will be accessible to all developers and its facility allows

developers to focus on creating the database schema and while letting the

application server define table based on the fields in JSP and relationships between

them.

This application software has been computed successfully and was also

tested successfully by taking “test cases”. It is user friendly, and has required

options, which can be utilized by the user to perform the desired operations.

The software is developed using Java as front end and Oracle as back end in

Windows environment. The goals that are achieved by the software are:

✔​ Instant access.

✔​ Improved productivity.

✔​ Optimum utilization of resources.

✔​ Efficient management of records.

✔​ Simplification of the operations.

✔​ Less processing time and getting required information.

✔​ User friendly.

✔​ Portable and flexible for further enhancement.

References

Core Java™ 2 Volume I – Fundamentals 7th Edition -​ Cay S. Hortsman
Pearson Education – Sun Microsystems ​ Gary Cornell

Core Java™ 2 Volume II – Advanced -​ Cay S. Hortsman
Pearson Education – Sun Microsystems ​ Gary Cornell

Head First Servlets & JSP -​ Eric Freeman
O’Reilly – SPD ​ Elisabeth Freeman

The Book of JavaScript 2nd Edition -​ thau
SPD

Effective Java – Programming Language Guide -​ Joshua Bloch
Pearson Education – Sun Microsystems

Java Database Best Practices -​ George Reese
O’Reilly – SPD

JBoss – A Developers Notebook -​ Norman Richards
O’Reilly – SPD ​ Sam Griffith

	Importance of Java to the Internet
	
	Java can be used to create two types of programs
	Features of Java Security
	Portability
	The Byte code
	Java Virtual Machine (JVM)
	
	
	Java Architecture
	Compilation of code
	History
	White-box and black-box testing
	Test levels
	Test cases, suites, scripts and scenarios
	A sample testing cycle

