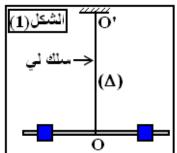

التمرين 1

يتكون نواس اللي الممثل في الشكل من قرص (D) وسلك لي ثابتة ليه عزم $J_{\Delta} = 2,5.10^{-3} Kg.m^2$ هو (Δ) النسبة لمحور الدوران (Δ) $heta_m = rac{\pi}{4}$ عند التوازن يكون السلك غير ملتو ِ $heta_0 = 0$). ندير $heta_0 = 0$

 $t_0=0$ بالنسبة لموضع توازنه ، ثم نحرره بدون سرعة بدئية عند لحظة تاريخها نعتبر الاحتكاكات مهملة

1) بتطبيق القانون الثاني لنيوتن، أثبت المعادلة التفاضلية لحركة النواس. استنتج طبيعة


. $\Delta t = 2s$ نقيس المدة الزمنية Δt التي تستغرقها 10 تذبذبات فنجد (2

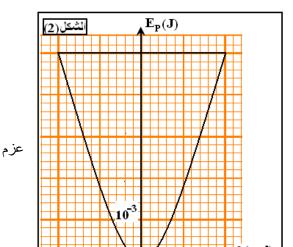
1.2) أحسب قيمة ثابتة اللي $\, C \,$.
2.2) أوجد المعادلة الزمنية لحركة النواس .

التمرين 2

يمثل الشكل (1) نواس لي مكون من ساق متجانسة معلقة من منتصفها بواسطة سلك فولاذي والم وتحمل سحمتين متماثلتين لهما نفس الكتلة m=100g ، تبعد كل واحدة منهما بالمسافة d=4cm عن النقطة O . ندير الساق ابتداءً من موضع توازنها t=0 بزاویة $heta_m$ فی منحی نعتبره موجبا ثم نحرره بدون سرعة بدئیة فی لحظة برا

نسمى J_{Δ} عزم قصور المجموعة $\{$ الساق+السحمتين $\{$ بالنسبة لمحور (Δ) رأسي يمر من C و C ثابتة اللي للسلك الفولاذي $\pi^2 = 10$ ناخذ

- 1) بتطبيق القانون الثاني لنيوتن،، أوجد المعادلة التفاضلية وحدد طبيعة الحركة .
 - استنتج تعبير الدور T_0 للحركة .
- $\Delta t = 40s$ علما أن المدة الزمنية التي يستغرقها النواس لإنجاز 10 ذبذبات هي T_0 عمد المنحنى المدة المنحنى الممثل في الشكل (2).

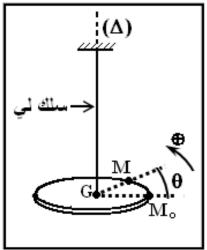

 - مدد قيمة الوسع القصوي θ_m ثم أوجد المعادلة الزمنية للحركة . 2.4) أحسب منظم متجهة السرعة الخطية لمركز ثقل كل سحمة عندما

 $heta=rac{\pi}{12}$ تكون الساق الزاوية $heta=rac{\pi}{12}$ مع موضع توازنها .

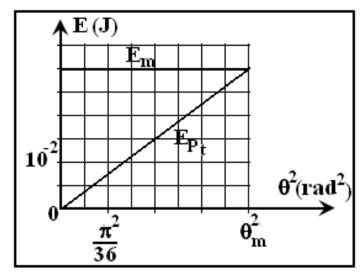
(00') أحسب قيمة C ثابتة لي السلك الفو $_{
m Ki}$

 J_o أوجد قيمة عزم قصور المجموعة ك $^{oldsymbol{J}}$ ؛ ثم استنتج قيمة (4.4 (OO') قصور الساق وحدها بالنسبة لمحور الدوران

 $J_{\Lambda} = J_0 + 2md^2$


Www.AdrarPhysic.Com

_____ التمرين 3 _____


ننجز نواس لي بتثبيت قرص متجانس شعاعه r=10cm من مركز قصوره G بطرف سلك فلزي رأسي محوره و ثابتة ليه ننجز نواس لي بتثبيت قرص متجانس شعاعه $J_{\Delta}=2,5.10^{-3}Kg.m^2$. الطرف الآخر للسلك مثبت إلى حامل . عزم قصور القرص بالنسبة للمحور (Δ) هو $J_{\Delta}=2,5.10^{-3}Kg.m^2$. نهمل جميع الاحتكاكات .

ندير القرص أفقيا حول المحور (Δ) في المنحى الموجب ، بالزاوية θ_m انطلاقا من موضع توازنه ، ثم نحرره بدون سرعة بدئية عند M_0 في المنحى M_0 من محيط القرص في كل لحظة بالأفصول الزاوي m_0 عيث m_0 حيث m_0 اللحظة m_0 بمعلم موضع نقطة m_0 من محيط القرص في كل لحظة بالأفصول الزاوي

موضع $oldsymbol{M}$ عند التوازن.

يعطي المبيان الممثل التالي، تغيرات طاقة الوضع للي E_{Pt} والطاقة الميكانيكية E_m بدلالة $oldsymbol{ heta}$ مربع الأفصول الزاوي .

) أكتب تعبير الطاقة الميكانيكية للمتنبذب بدلالة C و Δ و θ و θ السرعة الزاوية واستنتج المعادلة التفاضلية لحركة القرص و المراد المعادلة التفاضلية الحركة القرص و المراد المراد المعادلة التفاضلية الحركة القرص و المراد ال

2) بالاستعانة بالمبيان ، عين:

2.1) ثابتة لي السلك .

$$heta=rac{\pi}{6}rad$$
 السرعة الزاوية $heta$ للقرص عندما يكون الأفصول الزاوي $heta$ 10 $au^2=10$

 $\pi^2 = 10$ ناخذ

Www.AdrarPhysic.Com