
 BE /B.Tech

Regulations 2022

OBJECTIVE(S):

●​ To learn about automata theory and regular expressions.
●​ To learn to design and implement a lexical analyzer.
●​ To learn the role of a parser and to study the different ways of parsing tokens.
●​ To study the process of Intermediate Code generation and its representations.
●​ To study the concepts of machine code generation.
●​ To study the concepts of Code Optimization

PREREQUISITES: Nil

UNIT-I INTRODUCTION TO AUTOMATA THEORY AND REGULAR EXPRESSIONS 9

Finite Automata – Deterministic Finite Automata – Non-deterministic Finite Automata – NFA to DFA
– Finite Automata with Epsilon Transitions – Epsilon-NFA to DFA – Kleene’s Theorem –
Minimization of Automata – Regular Expressions – Equivalence between Regular Expression and
Automata – Properties of Regular Expressions.

UNIT-II LEXICAL ANALYSIS ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

The Structure of a Compiler – Evolution of Programming Languages – Application of Compiler
Technology – Lexical Analysis – Role of Lexical Analyzer – Input Buffering - Specification and
Recognition of Tokens – Lexical Analyzer Generators.

UNIT-III SYNTAX ANALYSIS ​ ​ ​ ​ ​ ​ ​ ​ ​ 11

Introduction – Context Free Grammar – Writing a grammar - Top Down Parsing – Recursive
Descent Parsing – Predictive Parsing – NonRecursive Predictive Parsing – Error Recovery – Bottom
Up Parsing – LR Parsers – Construction of SLR (1) Parsing Table, Canonical LR (1) Parsing Table and
LALR (1) Parsing Table – Parser Generators.

UNIT-IV INTERMEDIATE CODE GENERATION ​ ​ ​ ​ ​ ​ 9

Symbol Table – Construction – Syntax Directed Definitions – Evaluation Orders for Syntax Directed
Definitions – Applications of Syntax Directed Translation – Intermediate Code Generation – Three
Address Code – Types and Declarations – Expression Translation – Type Checking – Control Flow-
Back Patching.

UNIT-V CODE GENERATION AND OPTIMIZATION ​ ​ ​ ​ ​ 9

Regulations 2022

Department of Information Technology

Course
Code Course Title

Hours / Weeks Credits Maximum Marks
L T P C CA EA Total

422ITT06 COMPILER ENGINEERING 3 0 0 3

40

60 100

 BE /B.Tech

Regulations 2022

Issues – Design of Code Generator – Addresses in the Target Code – Basic Blocks in Flow Graph –
Simple Code Generator – Peephole Optimization – Machine Independent Optimization – Principal
Sources of Optimizations – Bootstrapping a Compiler – Compiling Compilers – Full Bootstrap.

 Total Hours: 45

OUTCOMES:
Upon completion of the course, the students will be able to:
CO1: Understand the construction of deterministic and nondeterministic automata.
CO2: Understand the concept of lexical analysis and various phases of a compiler
CO3: Apply different parsing algorithms to develop the parsers for a given grammar.
CO4: Represent the intermediate code for the source languages
CO5: Design and analyze code generation schemes and various optimization techniques.

Mapping of CO’s with PO and PSO

CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PSO3

C01 3 2 2 3 3 - - - - - - 3 1 - -

C02 3 3 2 3 - - - - - - - 3 1 3 -

C03 3 3 2 3 3 - - - - - -- 3 - 2 3

C04 3 2 3 3 - - - - - - - 3 - 2 3

C05 2 2 3 3 3 - - - - - - 3 - 2 3

AVG 3 2 2 3 3 - - - - - - 3 1 2 3

TEXT BOOKS:
1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, “Compilers: Principles,
Techniques, and Tools”, Second Edition, Pearson Education, 2023.
2. John Hopcroft, Rajeev Motwani, Jeffrey Ullman, “Introduction To Automata Theory Languages,
and Computation”, Third Edition, Pearson Education, 2021.

REFERENCES:
1.Dhamdhere D M, “Compiler Construction Principles and Practice" Second edition, Macmillan India
Ltd., New Delhi, 2005.
2. Torbengidius Mogensen, “Basics of Compiler Design”, Springer, 2011.
3. Charles N, Ron K Cytron, Richard J LeBlanc Jr., “Crafting a Complier”, Pearson Education, 2010.
4. K. D. Cooper, L. Torczon, “Engineering a Compiler”, Morgan-Kaufmann, Second Edition, 2011.
5. Micheal Sipser, “Introduction to the Theory of Computation”, Third Edition,2014.

