Tab 1

2/9/2025

USACO Silver | Rectangular Pasture

Author: Hengsheng W.

Thinking Process
First, this problem may seem (and is, indeed) quite hard. Some ways you might

want to start this problem and snatch the first few subtasks are:

e Simulate every single one of the 2" possibilities for the cows, and check if
each one works. This method will work forn < 30, but the idea seems very
complicated, and the method certainly will not work forn = 2500.

e lIterate through the number of cows in the subset, and count the number of
ways to do it successfully each time, using a map/dictionary. For O cows,
the answer is 1. For 1 cow, the answer is n. Then for 2, 3, 4, and so on, we
look at every single n-Choose-i way and store the pair of coordinates of the
minimum-area rectangle that stores these cows in a set or map or
something. Then, we will not overcount cases.

e Look at every possible pair of cows as corners of the subset rectangle, and
then iterate through every single cell in the rectangle. We store the set of
cows in this subset inside of a set of sets, to prevent overcounting.

All of these naive ways might be able to pass a few test cases, but this certainly is

not enough to solve the whole problem. Let's take a look at the solution algorithm:

Solution - Algorithm
Observe:
e |n order to have a unique subset of cows inside a pasture
e Then, the cows should be in a rectangle
e The rectangle should always have two opposite corners being the
coordinates of a cow, in order to be the rectangle with minimal area
It is also an extremely important part that any two cows will not share the same x

ory. If so, then this problem would be a little bit more complicated.

https://usaco.org/index.php?page=viewproblem2&cpid=1063

2/9/2025

Using the previous observations, we realize that we can:
e |terate through every distinct pair of cows, and use them as the minimum-x

and maximum-x borders of the rectangle holding the current subset:

V Cow 2

“ TR

Some Subset [

Finding the number of cows in this area.

Cow1

Y

e Now, notice that the number of ways we can create a rectangle that has
Cow 1 and Cow 2 as x-value "anchor” points is the number of cows
between x1 and x2 while being below y1 (a), multiplied by the number of
cows between x1and x2, while being above y2 (b), including cow 1and cow
2.

e This brings up an essential question: how do we calculate a and b? Well, we

can:

2/9/2025

e Define a 2D Prefix Sum which stores the number of cows from the
coordinates (0, 0) to (i, j). Using this, we can find the number of cows in the
area of the rectangle below the main “min"-rectangle and the number of

cows above the main “min”“-rectangle.

This brings up a problem; calculating the prefix sum for all 10° x and y values will
be rather difficult. Instead, we can do something called “compression”. This will

make prefix sums much easier and efficient to calculate:

There are certain “points of interest” on the huge chessboard; that is where the

cows are located. So, instead of trying to analyze a chessboard looking like this:

We could, instead, compress the grid of cows into this:

This way, creating a prefix sum will be much easier, and in this example, it will look
like this:

e |n order to create the 2D prefix sum, we will iterate through every row, and

inside each iteration, iterate over every column. We will have to add the

number of cows so far from the upper area and from the left-side area, and

2/9/2025

then subtract the number of cows from the upper-left area to stop
overcounting.
e This also brings up the issue that our prefix sum's index starts from 0, so we

will 1-index the prefix sum.

e Now, the prefix sum will look like this:

Now that we have this prefix sum, the main idea of the solution should be clearer,

and we can move onto the code.

2/9/2025

CODE
By Hengsheng W.
Initialization of regular items and packages

include <bits/stdc++.h>
std;

using p = pair<ll, 11>;

cin >> n;
vector<p> loc (n);
for (& 1 : loc) {
cin >> 1.first >> 1l.second;

Compression of the locations.

sort(loc.begin(), loc.end());

for (i=0; 1< n; i++) {
loc[i].first = 1 + 1;

}

sort(loc.begin(), loc.end(), [](
return a.second < b.second;

1)
for (

i
loc[i].second = i + 1;

=0; 1< n; i++) {

}
sort(loc.begin(), loc.end());

2/9/2025

2D Prefix Sum Initialization, now that we have compressed the graph.

vector<vector< >> prefix (n + 1, vector< > (n + 1, 9));
for (& cow : loc) {
prefix[cow.first][cow.second] = 1;

}
for (i=1;1<=n; i++) {
for (j=1; j <= n; j++)
prefix[i][j] += prefix[i
prefix[i
prefix[i

Find the answer:
e |[teration between all pairs of cows
o Look at the coordinates, define coordinates of corners of
“min"-rectangle
o Find the number of cows on upper side of min-rectangle

o Find number of cows on lower side of min-rectangle

11 answer = n + 1;
for (i=0;1<n; i++) {
for (j=1+1; j<n; j++) {

p currA = loc[i];

p currB = loc[j];
x1 = min(currA.first, currB.first);
x2 = max(currA.first, currB.first);
yl = min(currA.second, currB.second);
y2 = max(currA.second, currB.second);
higher = 1 + prefix[x2][n] -

2/9/2025

prefix[x2][y2] -
prefix[x1][n] +
prefix[x1][y2];
[
[

11 lower =1 + prefix[x2][yl - 1] -
prefix[x1][yl - 1];
answer += higher * lower;

}

cout << answer;

Hopefully this made some sense, goodbye!

	Tab 1

