
Welcome to the Fidget wiki!

You are probably wondering “Why is your wiki a google doc?”. The answer
is quite simple my friend! I just didn’t have anything better laying around
and didn’t feel like searching too much.

Let's start, shall we?

FAQ:

When I download the library, it errors.
Well the folder you should have in your directory is “Fidget”
When you download from github it gives you a zip and in that zip is a folder
with the branch name called “fidget-main” you need to take just the “Fidget”
folder out of that and put it in your avatar
​
Current version: v1.0 ​

Getting started:

To begin using fidget, you need to require it like so:

local fidget = require("Fidget.FidgetSetup")

After that your first function to run(after entity init) is:

local rigidbody = fidget.rigidbodies.createRigidbody({pos =

player:getPos()})

This will create a rigidbody with default parameters at your location.​

After this lets move on to joints. Currently there is only one joint type with
more planned in the future.​
​
To create a joint you first need 2 rigidbodies. To connect them with a joint
you need to call the appropriate function
(The code is on the next page cause it doesnt fit)

 local rigidbody1 = fidget.rigidbodies.createRigidbody({pos =

player:getPos()})

 local rigidbody2 = fidget.rigidbodies.createRigidbody({pos =

player:getPos()})

 fidget.joints.createJoint(

 {

 rigidbody1 = rigidbody1,

 rigidbody2 = rigidbody2,

 }

)

Congrats! Now you have 2 rigidbodies that fall down and interact with the
world! Though there is a bit of a problem. They just fall down when you
spawn them. Let’s give them some velocity on spawn.

 local rigidbody1 = fidget.rigidbodies.createRigidbody({pos =

player:getPos(),vel = player:getLookDir()*10})

 local rigidbody2 = fidget.rigidbodies.createRigidbody({pos =

player:getPos(),vel = player:getLookDir()*10})

 fidget.joints.createJoint(

 {

 rigidbody1 = rigidbody1,

 rigidbody2 = rigidbody2,

 distance = 1,

 }

)

​
​
How nice.

You now know the absolute basics. Let’s move onto the documentation

Rigidbodies function:​

fidget.rigidbodies.createRigidbody(params<table>)

This creates a rigidbody with the given parameters, these parameters
include:

pos - position(vec3)

vel - velocity(vec3)

rot - rotation(vec4<quaternion>)

rotVel - angular velocity(vec3)

mass - mass(scalar)

dimensions - dimensions of the cuboid(full dimensions not half

extents)(vec3)

gravity - do i really have to explain this(vec3)

friction - coefficient of friction(scalar)

linearMovement - contrary to the name it makes a body unable to move in

any direction(bool)

model - modelpart that the body should appear as(modelpart)

modelScale - scales the modelpart(vec3)

worldCollision - controls if the body collides with the world(bool)

isSleeping - controls if the body is sleeping on spawn(bool)

All these values are read/write and the fastest both in terms of instructions
and ms is to just index the rigidbody directly. If you want to use functions to
edit them they are below.

Rigidbody methods:

rigidbody:remove()

Deletes a rigidbody

rigidbody:addForce(force(vec3))

Adds force to the rigidbody(only linear movement)

rigidbody:addForceAtPoint(point(vec3), force(vec3))

Adds force to the rigidbody at a point.

rigidbody:setPos(pos(vec3))

Sets the rigidbody position to the given vec3.​
Same function exists for:
vel,rot,rotVel,mass,dimensions,gravity,friction,linearMove
ment,modelScale,worldCollision,isSleeping
(im to lazy to write that all out)

rigidbody:getPos()

Gets the rigidbody position.
Same function exists for:
vel,rot,rotVel,mass,dimensions,gravity,friction,linearMove
ment,modelScale,worldCollision,isSleeping

Physics Simulation

Ahh the variables in here control the simulation(duh). You can control the
quality, some other parameters and turn on debug visuals.

There are no functions this time around though(I’m too lazy to make them).

I’m feeling kinda lazy so I’m just gonna put part of the code here

physicsSim.physicsIterations = 2 --physics steps per tick

physicsSim.dt = (1/20)/physicsSim.physicsIterations --delta time controls

how fast the simulation runs if its lower then the simulation runs slower

physicsSim.step --step count(how many steps happened since the physics

started)

physicsSim.velocityIterations = 4 -- improves stability and convergence

physicsSim.baumgarteMultiplier = 0.2 --what is this german-ass name bruh.

Baumgarte? more like "Ba! En garde!" controls how violently rigidbodies

separate

physicsSim.slop = 0.000 -- sloppy,sloppy, little slop. How to slop slop

slop. Never gonna slop you up never gonna slop you down and slop around

and slopert you! but fr this is slop for baumgerte

physicsSim.relaxation = 1 --mightTM improve stability and convergence(but

from my testing it didnt lmao)

physicsSim.cacheMultiplier = 0.9--How much of the cached impulse comes

over to the next physics step

physicsSim.broadPhaseCollision = "aabb" --options: sphere, aabb controls

how broadphase is conducted, aabb is faster

physicsSim.normalSnappingThreshold = 0.01--for stability, dont go too high

on this one

physicsSim.sleeping = false-- if true rigidbodies can eep. eepy time. I

sleep too. What does it mean to sleep? how many years have passed since i

went into bed(probably around 3/(365*2))

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

physicsSim.sleepTimeThreshold = 0.1 --how long does a body need to be

still to sleep in seconds

physicsSim.sleepVelocityThreshold = 0.1 -- How fast does a body need to

move to sleep

physicsSim.sleepRotVelocityThreshold = 0.02

physicsSim.waterDensity = 1 -- controls buoyancy

physicsSim.waterDamping = 0.92 -- how much is the velocity and ang

velocity slown down in water

physicsSim.contactPointMergingThreshold = 0.03--how close do pointy points

need to be to be one pointy point

physicsSim.solver = "regularPGS" --either regularPGS or

scuffedSplitImpulse the 1st one has more accurate friction but is less

stable with stacking, the 2nd is way more stable but has a few "bugs" with

friction sometimes. generally option 2 is better except for accuracy

critical things like dominoes

physicsSim.debug = {

worldColliders = false, --shows the world colliders

contacts = false, --shows the contact points with impulses applied

axis = false, --shows axis of the body at local origin of the body

broadphaseAABB = false, --shows aabbs used in broadphase collision

collisionNormals = false, --show the normals at collisions(the the local

space origin of one of the bodies)

waterVolumes = false, --shows the volumes used for buoyancy

joints = true, --shows the joints

}

(the humor does not hit)
To edit any of the values you just do:

fidget.physicsSim.<index>

Or in case of the debug values:

fidget.physicsSim.debug.<index>

—----------

There also is one function for changing the simulation quality:​

fidget.physicsSim.changeQuality(quality<string>)

For the quality you have 4 options: “high”,”medium”,”low”,”lowest”

That’s all

Joints

Finally the end is coming

joints.createJoint(params)

​
Creates a joint with the given parameters

Those parameters include:​

 pos1 - the position of the first end of the joint in local space of

the first body

 pos2 - the position of the first end of the joint in local space of

the second body

 rigidbody1 - no need to explain

 rigidbody2 - no need to explain AGAIN

 distance - the distance 2 bodies will keep from eachother

Gotta love the formatting.

Anyways there are functions for setting/getting the pos1,pos2,distance just
like the rigidbodies(eg. joint:setPos1()) and just like with rigidbodies it's
faster to edit them directly.

The end​
​
​
This is not my real email btw

