Welcome to the Fidget wiki!

You are probably wondering “Why is your wiki a google doc?”. The answer
is quite simple my friend! | just didn’t have anything better laying around
and didn’t feel like searching too much.

Let's start, shall we?

FAQ:

When | download the library, it errors.

Well the folder you should have in your directory is “Fidget”

When you download from github it gives you a zip and in that zip is a folder
with the branch name called “fidget-main” you need to take just the “Fidget”
folder out of that and put it in your avatar

Current version: v1.0

Getting started:

To begin using fidget, you need to require it like so:

fidget = require ("Fidget.FidgetSetup")

After that your first function to run(after entity init) is:

rigidbody = fidget.rigidbodies.createRigidbody ({pos =

player:getPos () })

This will create a rigidbody with default parameters at your location.



After this lets move on to joints. Currently there is only one joint type with
more planned in the future.

To create a joint you first need 2 rigidbodies. To connect them with a joint
you need to call the appropriate function
(The code is on the next page cause it doesnt fit)

rigidbodyl fidget.rigidbodies.createRigidbody ({pos
player:getPos () })

rigidbody?2 fidget.rigidbodies.createRigidbody ({pos
player:getPos () })

fidget.joints.createdJoint (

rigidbodyl,
rigidbody2,

Congrats! Now you have 2 rigidbodies that fall down and interact with the
world! Though there is a bit of a problem. They just fall down when you
spawn them. Let’s give them some velocity on spawn.

rigidbodyl = fidget.rigidbodies.createRigidbody ({pos
player:getPos () ,vel = player:getLookDir ()*10})
rigidbody2 = fidget.rigidbodies.createRigidbody ({pos
player:getPos () ,vel = player:getLookDir ()*10})
fidget.joints.createdoint (
{
rigidbodyl rigidbodyl,

rigidbody?2 rigidbody2,

distance




How nice.

You now know the absolute basics. Let’'s move onto the documentation

Rigidbodies function:

This creates a rigidbody with the given parameters, these parameters
include:

pos — position (vec3)

vel - velocity (vec3)

rot - rotation (vecd<quaternion>)

rotVel - angular velocity(vec3)

mass — mass (scalar)

dimensions - dimensions of the cuboid(full dimensions not half
extents) (vec3)

gravity - do i1 really have to explain this (vec3)

friction - coefficient of friction(scalar)

linearMovement - contrary to the name it makes a body unable to move in

any direction (bool)

model - modelpart that the body should appear as (modelpart)
modelScale - scales the modelpart (vec3)

worldCollision - controls if the body collides with the world (bool)

isSleeping - controls if the body is sleeping on spawn (bool)




All these values are read/write and the fastest both in terms of instructions
and ms is to just index the rigidbody directly. If you want to use functions to
edit them they are below.

Rigidbody methods:

Deletes a rigidbody

rigidbody:addForce (force (vec3))

Adds force to the rigidbody(only linear movement)

rigidbody:addForceAtPoint (point (vec3), force (vec3))

Adds force to the rigidbody at a point.

rigidbody:setPos (pos (vec3))

Sets the rigidbody position to the given vec3.
Same function exists for:

vel,rot.rotVel.mass.dimensions.gravity.friction.,linearMove
ment.modelScale.worldCollision.isSleeping

(im to lazy to write that all out)

rigidbody:getPos ()

Gets the rigidbody position.
Same function exists for:

vel.rot.rotVel.mass.dimensions.qgravity.friction.linearMove
ment.modelScale.worldCollision.isSleeping

Physics Simulation



Ahh the variables in here control the simulation(duh). You can control the
quality, some other parameters and turn on debug visuals.

There are no functions this time around though(I’'m too lazy to make them).

I’'m feeling kinda lazy so I'm just gonna put part of the code here

.physicsIterations = 2

.dt = (1/20) /physicsSim.physicsIterations

> SiEEP

.relaxation = 1
eMultiplier = 0.9
.broadPhaseCollision = "aabb"

.normalSnappingThres

.sleeping =

.sleepTimeThreshold =




cerDensity 1

erDamping 0.92

.contactPointMergingThreshold = 0.03

.solver = "regularPGS"

worldColliders

contacts

phase

collisionNorma

(the humor does not hit)
To edit any of the values you just do:

fidget.physicsSim.<index

Or in case of the debug values:

fidget.physicsSim.debug.<index

There also is one function for changing the simulation quality:

fidget.physicsSim.changeQuality (quality<string>)

” " » " ”»

For the quality you have 4 options: “high”,”"medium”,”low”,”lowest”



That’s all

Joints

Finally the end is coming

joints.createdJoint (params)

Creates a joint with the given parameters

Those parameters include:

posl - the position of the first end of the joint in
first body
pos2 - the position of the first end of the joint in
second body

rigidbodyl - no need to explain

rigidbody2 - no need to explain AGAIN

distance - the distance 2 bodies will keep from eachother

Gotta love the formatting.
Anyways there are functions for setting/getting the pos1,pos2,distance just
like the rigidbodies(eg. joint:setPos1() ) and just like with rigidbodies it's

faster to edit them directly.

The end

This is not my real email btw







































