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‘Big Data’ typically refers to large datasets, mined in bulk from modern electronic devices, that 
can be analyzed to extract patterns of behavior at both the macro and micro level. More often 
than not, big data is derived from major systems, such as social networks or telephone providers, 
or from other sensor networks that compose the big data firehose. Humans have also been 
recruited to act as sentient sensors that can contribute richer and finer-grained crowdsourced 
data to this big pile. Nevertheless, big data is not only found in the form of (near) real-time 
information extracted through reality mining. While the activities that take place in a city are fast 
and mobile, the immobile structures that make up the physical city evolve at a much slower pace, 
creating a sedimentary layer of ‘old big data’ that is possibly more useful -- certainly as useful -- 
for city planning as the information derived from real-time sensing.Using our efforts in Venice 
(Italy) to record the historical evolution and current state of the city through many kinds of data, 
we  show how smart-city approaches can be used to capture the backlog of data that predates the 
current age of the internet, and also to intercept gradual structural changes to the built 
environment that happen in ‘slow real time’. Such techniques are applicable to all cities, and 
especially to world heritage sites like Venice where we can  accumulate longitudinal big data that 
can gradually transform a smart city into a wise city.  

 

Since its appearance, in the beginning of the twenty-first century, the ‘big data’ moniker has 
evolved into a veritable meme (Lohr, 2012). Despite losing some of its luster of late (Bean, 
2014), it has been making steady inroads into the mainstream of today’s technology Zeitgeist. The 
primary connotation of Big data refers to the sheer size of the datasets, and in the early days the 
phrase was used to describe the data-mining techniques invented by the Human Genome Projects 
to sort through the myriad of patterns in DNA (Howe et al., 2008). More recently, the term has 
acquired a strong association with real-time data collected automatically from the web (Eagle and 
Pentland, 2006): from networks of cameras, sensors, turnstiles and card readers; from online 
websites and social networks; or in general from smartphone users connected to internet or 
cellular providers (Ratti et al., 2006). In common parlance, the term big data is used broadly to 
refer to vast troves of bits, gathered quickly and automatically, from which we can extract useful 
information about patterns of behavior. Nevertheless, as urban scholars, we should remind 
ourselves that some data is big but not new, and that old data can become very big, if we collect it 
and organize it using modern data mining and crowdsourcing techniques. 
Smart cities are beginning to use big data to some advantage, by analyzing real-time streams that  
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measure such activities as daily commutes, financial transactions, social relationships and other 
human events (Batty et al., 2012). In comparison, much less attention is being paid to urban 
change that happens in ‘slow real time’, namely the gradual creation and modification of a city’s 
physical structures, mostly governed by municipalities through building permits, inspections, 
approvals, licenses and the like. These slow but steady changes have created the current built 
environment where today’s real-time big data is produced and collected, yet, ironically, these 
sedimentary layers of old big data are almost never organized and analyzed using traditional big 
data techniques.  
This paper illustrates some of the innovative approaches that were employed to collect, organize 
and re-circulate ‘old big data’ about the city of Venice collected by cohorts of engineering 
students from Worcester Polytechnic Institute (WPI) over many years. We hope this will inspire 
other cities and world heritage sites  to adopt similar techniques to mine their own deep-rooted 
repositories of past information and to intercept slow urban change as it happens in piecemeal 
fashion day after day. 
 

Structures and Activities: Physical Context and Digital Content 

One useful way of thinking about our cities -- smart or not -- is to divide them neatly into two 
halves as did Italo Calvino in his Sophronia (Calvino, 1972): the ephemeral half-city of 
movement and activities and the solid half-city of the physical structures.  This dichotomy 
represents ‘the content and the context’ of city life (Carrera, 2004), which Kevin Lynch (1984) 
called ‘the spatiotemporal distribution of human actions and the physical things which are the 
context of those actions’. Even though today’s big data technologies are almost exclusively 
applied to activities, we argue here that they could  (and should) also be applied to physical 
structures.  
The endless streams of digital content mined from the web or from other networks are frequently 
mapped against their physical contexts, which are deemed immutable at the time-scale of today’s 
instant data mining, but are in actuality changing as well, albeit much more slowly and almost 
imperceptibly. The material makeup of the city is taken somewhat for granted, but it is itself a 
consequence of past activities which are less about the short-term daily use of the city and more 
about the long-term creation of the city’s physical infrastructures through structural city-making 
activities such as land development, construction projects, and conversions of extant buildings.  
When a citizen goes to city hall to apply for a permit to build a house in a vacant lot, he or she is 
creating a single transactional data point somewhere in some municipal database. This single 
event may seem unremarkable vis a vis the myriad of activities and transactions that happen in 
the vicinity of that vacant lot on a daily basis: from phone calls to internet logins, from Facebook 
posts to Instagram uploads, from vehicular traffic to transit commutes, from car accidents to 
crime, from theatre shows to music concerts, and much more. However, in short order, this one 
boring permit event will engender a new building, which in turn will change the physical 
configuration of this block for a long, long time, and affect all activities in the area as well. This 
single transaction will create a new context for future activities and the cumulative effect of many 
such apparently insignificant transactions is what created the here in which we all live now. 
Mapping the present-day layout of cities has been the focus of the past two decades of 
Geographical Information System (GIS) efforts at the municipal, regional and national levels. 
Despite these ongoing endeavors, detailed GIS layers of each city are not always accessible to 
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outsiders. OpenStreetMap, which is crowdsourcing the creation of a single, GIS-grade, world 
map thanks to the efforts of tens of thousands contributors, is the major example of big data about 
the physical infrastructure that comes to mind. However, it only portrays a limited subset of the 
layers of urban elements that make up the city. Furthermore, it does not capture urban change as it 
happens by intercepting government processes -- such as a new construction permit -- but relies 
instead on ex-post updates after the building has been constructed. Moreover, online mapping 
services like Google Maps or OpenStreetMap capture mainly the geometry of urban change, but 
not the attributes associated with such change, which is where the real big data lies.  
One of the arguments of this paper is that a smart city can become wise by coupling the 
here-and-now of G.I.S. with fast real-time data and also with the there-and-then of past records 
about modifications of the built environment over time. Big data approaches to mine activities as 
they occur should be applied not only to everyday patterns of human behavior, but also adopted 
to capture the more mundane trickle of events and transactions that signal the slow but steady 
change in the fabric of our cities. 
When we collect dynamic data about human activities, we should always be cognizant of the 
exact configuration of the physical context at the time of the data collection. In Venice, we 
manually gathered boat traffic data between 1998 and 2003, and the methods we developed were 

later adopted by the municipal 
government who continued to conduct 
regular boat counts until 2009 as we 
show in (Figure 1). 
 
While hundreds of trained data collectors 
were conducting dozens of day-long field 
campaigns, some of the city’s canals 
were undergoing regular maintenance 
and therefore were closed to traffic. We 
knew about the closures at the time of the 
boat counts, yet we did not save a precise 

map of the network situation on the exact days of the campaigns, foregoing a great opportunity to 
record patterns of behavior around closed canals, and in fact missing the chance to measure driver 
adaptation in the real world. Our data was skewed by these closures. We may have encountered a 
higher-than-usual number of boats on a specific canal segment simply because an adjoining 
segment was closed for maintenance.  This mistake of ours is probably very common, since it is 
unlikely that government agencies or traffic consultants, as part of their standard data collection 
procedure, routinely keep a record of the road network condition at the time of their traffic 
counts. Yet this approach would be obviously useful, if not necessary, in the long run.  

This is just one of the many examples that we have worked with in Venice, where a snapshot of 
activity in time should have been associated with the corresponding snapshot of space at that 
same time. We have grown so accustomed to separating our research on physical structures from 
our research on  activities that it does not even occur to us that recording one without the other 
would negatively affect the quality of the data collected. We make the mistake of thinking of 
structures as fixed and immutable backgrounds just because they change so slowly and gradually. 
Yet maintenance and construction activities that are constantly taking place around physical 
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structures always affect other human activities in that area, temporarily as well as permanently. 
We should accept that there is no such thing as a ‘steady state’ in the built environment of our 
cities, and collect and organize our data accordingly.  
 
Traffic is a great example of an activity which is totally affected by structures, since structures 
(e.g. roads) physically restrict and guide driving behavior in major ways, but also because 
structures (e.g. buildings) are occupied and used by people who in turn generate traffic. The 
construction of new homes not only adds new children to the school system, increases water 
supply requirements, requires larger water treatment capacity, but also generates extra vehicular 
and pedestrian traffic, by bringing in more patrons to local restaurants and to public events. New 
construction always affects and tends to increase, human interactions in one way or another.  
Structures and activities are inextricably intertwined and we should teach ourselves to record the 
relevant structural context every time we study the activities at a particular location. 

The long tail of old data  

Intuitively, it makes logical sense that there is more big data about the past than about the present, 
just as there are cumulatively more people who have died before us than there are living people 
on earth today. The past is therefore where the ‘big’ big data really lies. A lot of old big data is 
sitting in some archive waiting to be unearthed and digitized, and some may be literally buried 
underground in the form of archeological artifacts. But a lot of old big data is already in 
electronic form, stored  on various hard drives  in local government offices. Lately,  in the wake 
of the burgeoning open data movement, more and more government records about the recent past  
are now being posted on the web. Additionally, all of the data that is produced by automatic 
devices ages quickly and therefore continuously enriches the old data pile, day after day.  

Old data can be schematically arrayed in a long 
tail that stretches backwards from today and thins 
out as it recedes to the remote past as shown 
schematically in Figure 2.  
The exponential curve resembles the one that 
describes network effects in complex adaptive 
systems and it is the mirror image (if we rotated 
it along the Y axis) of the typical long-tailed 
depictions of rank-frequency distributions.  
 
The ‘old data’ power curve starts in the remote 

past and ends with a high spike at today. It precipitously declines like a hockey-stick as it moves 
backwards in time. Like all power laws, we can hypothesize that it is Pareto-distributed according 
to the typical 80-20 rule, which means that the terabytes of data collected in the 16 years since the 
start of the new millennium are probably matched by the total number of records available from 
the last century, yet the sum of all data points from the distant past is larger than all the data 
points collected recently, no matter what time span we use to delimit recent and past events. 
Organizing data about the pre-internet era is perhaps harder than it is to intercept streams of 
real-time data today, and it gets progressively harder to access and organize data the farther we 
dig into the past. Yet we need to address old data systematically if we want to be wise users of 
city knowledge.  
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In short, old data is big data and we should begin to treat it as such. It is big in terms of the 
number of records but perhaps even more so when it comes to its attributes. Old data can 
surprisingly be deeper and richer than new real-time data because each old record enshrines lots 
of attributes accrued over time and from different sources, whereas new real-time big data is 
often shallower, perhaps consisting of more records, but with potentially fewer attributes which 
are typically derived from a single data source. 
 
The Long Tail of Old Structures 
Much time is spent by researchers and professionals to gather rich information about specific 
characteristics of the built environment in an area of interest, but unfortunately very little of this 
hard-earned data is re-usable by the next researcher studying the same area. Old big data about 
structures can be quite rich and it is often redundantly collected -- in ad-hoc fashion -- for very 
impellent needs, often without a strategic systematic approach.  Some ‘old big data’ are found on 
government open-data web sites, yet, despite a recent focus on open data, these government 
datasets are still few and far between. So, old data is still being re-exhumed periodically by 
scholars and professionals, only to go back into obscurity again shortly thereafter. 
In historical cities like Venice, information about the existing infrastructure can come from many 
sources: from published books, studies or reports; from government records; from medieval 
manuscripts; and even from archeological reports about the ancestral layers that underlie the 
current city. Since many ancient buildings are still part of today’s built environment, the need for 
detailed information about our heritage goes beyond the mere collection of historical or 
architectural trivia, but requires a skillful technical approach in order to adequately support 
present-day maintenance, management and planning activities concerned with the urban 
infrastructure of historic places. 
 
Since 1988, teams of WPI students at the Venice Project Center (VPC) have conducted extensive 
inventories of all the major urban infrastructure in Venice, including: canals and canal segments 
(Chen et al., 2011), bridges (Bossalini et al., 2013), docks (Bennett et al., 2013), streets 
(Flaxington et al., 2015), wellheads (Blackwell et al., 2000), fountains (Kelley, et al., 2004), 
clocks (Chakuroff et al., 2014), bell towers (Baruffi et al., 2012), bells (Bove et al., 2015), 
churches (Dechaine et al., 2012), palaces (Fletcher et al., 2002), convents (Heinricker et al., 
2013), public art (Elbag et al., 2003) stores (Bruso et al., 2012), hotels (Connor et al., 2015), and 
many others (see veniceprojectcenter.org). Every dataset about structures includes attribute fields 
that reflect the ‘permanent’ features of each urban element, such as its date of construction, or its 
address, or its material, its dimensions, and others. But a ‘wise’ dataset also should keep track of 
information about more ‘dynamic’ features, such as the object’s state of conservation, which 
changes continuously and can only be captured with time-stamped snapshots. 
An example of an application that uses modern big data techniques to capture information about 
urban elements from past centuries is PreserVenice ( http://preservenice.org) which employs 
crowdsourcing and crowdfunding techniques to catalog and preserve the over 7,500 public 
artifacts that decorate the streets and canals of Venice (Ascare et al., 2010).  
The long old tail of these decorative urban elements stretches back over one thousand years, and 
it took over a decade for our project teams to map out the whole collection, which includes: coats 
of arms, statues, wellheads, fountains, street altars, flagpoles, inscriptions, reliefs and numerous 
other types of public art of various shapes and sizes.  It was a prolonged and time-consuming 
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process, but it is now completed. We have mapped the long tail of public art in Venice, and there 
will be very few modifications to be made in the future. The big data has been collected and now 
all we have to worry about is the current condition of each artifact to preserve the most 

‘endangered pieces’ before 
they deteriorate irreparably 
(Carrera, 1997). 
The PreserVenice app, 
funded by UNESCO, 
employs advanced data 
management techniques, 
borrowed from the world of 
complexity science, 
incorporated into our City 
Knowledge (CK) platform, 
a proprietary technology 
that assigns software agents 
to each element of the built 
environment. These 

software agents act as ‘guardian angels’ that oversee and mediate the interactions between each 
public art object and the mobile app (Carrera, 2012), which in turn collects micro-donations to 
preserve the pieces, by soliciting contributions while the donor is face-to-face with the artifact as 
shown in Figure 3.  
 
PreserVenice is an example of an app that deals with old data yet uses modern big data techniques 
to crowdsource the collection of updated condition information and to crowdfund the 
preservation efforts. There are lots of opportunities to apply similar approaches to the big old data 
backpile in every city, and there are more big old data in heritage sites than anywhere else. 
 
The Long Tail of Old Activities 
Activities that happened in the past, when collected at all, were probably only used for a brief 
period of time and were then probably forgotten after the issue-at-hand has been dealt with. 
Because of their ephemeral nature, past events are typically harder to mine and organize for 
future reuse, making it hard to conduct longitudinal comparisons of activities over time. 
Past activities that involve human behavior can be divided into two big categories:  

1.​ Anonymous events, such as vehicular traffic or transit commutes; 
2.​ Individual transactions generated by citizens, government or businesses. 

Some metrics of mass behavior -- such as passages at toll booths or turnstiles -- actually consist 
of frequent and numerous transactions, but they are typically analyzed anonymously and in the 
aggregate, thus they belong more to category 1 than 2. The rest of big behavioral data in the first 
category is collected automatically by sensors and counters, which capture events rather than 
transactions, as in the case of traffic volumes, which are routinely collected using pneumatic 
tubes or induction loops unbeknownst to the individual drivers.  
 
When it comes to past human activities, it is typically easier to backtrack through logs and 
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records of individual (category 2) transactions, for licenses, permits, deeds and the like, than it is 
to reconstruct and reuse massive event-based datasets from the past, which are rarely publicly 
available and require an understanding of the methods used to collect the data for apple-to-apple 
comparisons which alone can allow to accurately track the evolution of a phenomenon over time. 
An example of a big-data approach to old transaction records is the application called uScript 
(Cafferelli et al., 2007), an online tool for the cumulative digitization of historical documents 
which is shown in figure 4. uScript crowdsources the efforts of paleographers, who manually 
transcribe ancient manuscripts as part of their research (see Figure 4 and Cafferelli et al., 2007), 
and then uses these manual transcriptions to learn how to interpret automatically vast troves of 
historical records of government transactions from the Middle Ages and before (Carrera, 2005).  
uScript’s ability to tag people’s names, dates, currencies, place names, professions and the like, 
makes the entirety of the archive eminently searchable in many dimensions. uScript is a concrete 
example of modern techniques applied to old data. The widespread utilization of a tool like 

uScript would guarantee that 
all of the history of the world 
would be digitized after 
some time, making it the 
historical equivalent of the 
biological genome projects 
of the 90’s. uScript is a big 
data application for historical 
knowledge, just like the 
human genome project was a 
big data application for 
bio-genetic knowledge. 

 
The rest of this paper explores how both structures and activities are composed of old and new 
data, which can be collected and consumed at rates that are fast or slow, depending on the 
situation. In the sections that follow, the term ‘new’ refers to data produced today and more 
generally includes all data about the present, whereas ‘old data’ refers to data records about past 
events which may be still relevant to today’s situation, but may also provide a comparative record 
of change over time for both structures and activities. 
 

Slow old data: catching up with the backlog of history 

Given the preponderance of old data vs. new, one would expect that the backlog of past 
information would have been farmed and reused with the same systematic mindset that has been 
applied to the harvesting of big data about real-time urban activity metrics. But unfortunately that 
is not the case.  
The cities we live in are the result of years of piecemeal changes by countless individuals and 
institutions, both private and public. For practical present-day reasons, we need to know a lot 
about the physical characteristics of historical structures that survive today, and often we would 
like to know about their past histories as well. Longitudinal data about structures can be gleaned, 
even in the absence of documentary records, by decoding the historical information physically 
embedded into the construction materials and techniques that are layered into heritage sites. 
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Physical structures change slowly and gradual modifications over long time periods leave visible 
traces that can help us date the various alterations since their original inception.  
Some of these changes were also captured in maps and paintings, which depict buildings and 
monuments through the ages. In 2013, a Venice Project Center team developed a web platform 
for the annotation of ancient maps (Chines et al., 2013), which allows the users to highlight 
structures on the maps, name them and link them to representations of the same structure in other 
maps in Figure 5, thus creating an interactive portfolio of historical images of the built 
environment over time (cartography.veniceprojectcenter.org).  
 

Each structure that is 
identified in this 
cartography system 
contains a link to a 
Wiki page that gives 
detailed information 
about that structure. In 
fact, we have 
automated the creation 
of individual Wiki 
pages for each urban 
object, which are 
populated on-the-fly 
with data from our 
underlying platform. 

All of these individual pages about each object of the built environment are found in Venipedia 
Figure 6 (Bobel et al., 2012), a specialized Wiki which showcases all of the slow old data about 
structures that we have collected in Venice since 1988 (Finelli et al., 2010).   
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As of the summer of 2016, Venipedia contains over 24,000 pages, most of which are 
automatically generated from our platform (venipedia.org). 
 
On the wake of these academic projects, we are now developing a scalable commercial product, 
the City Knowledge (CK) platform, which links all available attributes -- including both current 
as well as historical information -- to each urban element, using space as the index in figure 7 
shows. Akin to what uScript does for ancient manuscripts, the CK platform makes it possible to 
gradually accrue richer and richer datasets about the built environment. The CK platform is a 
flexible framework for the organization and cumulative accrual of rich attribute data about the 
physical elements that make up the city and it is being developed as part of an all-Venetian startup 
incubator aimed at repopulating the city by providing good-paying jobs for young Venetians who 
are not interested in pursuing a career in tourism (Carrera, 2016a).  
All of the visualizations here utilize the underlying CK platform, which demonstrates the 
reusability of the system in a variety of contexts as shown in figure 7. 
 

 
All these projects prove 
that it is possible to 
gradually fill-in the long 
tail of old structures and 
to preserve and reutilize 
the resulting big old data 
for a variety of useful 
modern-day purposes.  
What is a lot harder to 
do is to backtrack and 
follow the trail of 
activities that took place 
in and around those 
structures over their 
lifespan. By and large, 

past records of human activities are not as useful ex-post except for comparative purposes or to 
reconstruct a chain of events that led to today’s situation. 
 
The digitalization of old data is never truly over, yet it asymptotically approaches zero as time 
passes and we stretch backwards into the past. The next section explains what we should be doing 
to prevent the hunting-and-gathering of past data going forward, by intercepting the old data 
produced by future change when it happens. 
 

Slow New Data: reality mining in slow real time 

Governments are mostly concerned about the present-day status quo within their jurisdiction. 
They keep fairly good records of past permits, deeds, plans, and other documents, but these are 
not as easily accessible as data that is the daily focus of municipal maintenance, management and 
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planning. While they perfunctorily archive past documentation of the change of ‘place over time’, 
cities are more likely to have up-to-date digital records about the ‘permanent present’ for their 
day-to-day duties and services, and yesterday’s situation is typically replaced with today’s 
changes in a never-ending cycle of constant renewal, which always keeps the present in the 
foreground. Although GIS and computerized databases are fairly widespread in local 
governments, the priority is still to cater to today’s needs, therefore digital and accessible 
longitudinal datasets are few and far between. 
As explained earlier, the daunting task of attaching rich descriptive attributes to the mapped 
geometries of physical structures is guaranteed to be attainable over time, in a cumulative 
manner, since cities are fortunately finite both in time and in space. As old as Venice is, its 
historical records only go back so far into the past and even the spatial extent of Venice is 
geographically circumscribed, so the effort of catching up with the backlog of past data is 
definitely finite in scope, thus achievable in large part.  
By adopting a ‘reality mining’ mindset for structural changes to the built environment, we can 
avoid creating more backlog for future researchers to sort through, using is a big data approach 
for the sustainable and perpetual updating of the knowledge base, as new change happens from 
here on down (Carrera, 2004). Ever since the term ‘reality mining’ was coined (Eagle and 
Pentland, 2006), it has been associated with the real-time logging of human activities over some 
digital network, the moment they occur. This paper simply proposes to extend this concept to 
structures, instead of relegating it to just activities and behaviors.  
Reality mining, when applied to structures, implies a systematic approach above and beyond the 
gradual and total accumulation of knowledge about the physical elements of the built 
environment already in existence (slow old data), by simultaneously capturing sporadic structural 
transactions as they happen in ‘slow real time’, in order to maintain an accurate and updated 
record of the physical makeup of the city as it changes -- ever so slowly -- over the years.  
 
The structures that comprise today’s built environment have reached their current status after a 
series of changes punctuated by government permits and other recorded events. Many of these 
transactions -- which, over time, change the face of the cities in which we live -- are part of the 
public record and are therefore available for consultation, albeit still mostly in paper form.  
More and more, cities are publishing logs of past transactions, like permits and licenses, as part of 
the government open data movement. For the most part, though, the data is published 
‘posthumously’ -- months, if not years, after the transactions have occurred -- and often as 
aggregate information, which is of more limited use than would be the ‘atomic’ record of each 
transaction. Government open data is updated infrequently and typically represents ‘delayed real 
time’, yet it is still useful for tracking urban change over time albeit with some delay.  
 
In Venice, we recently acquired public records,, dating back as far as the early 1900’s, from the 
Chamber of Commerce (LaRovere et al., 2015). The dataset contains records of all economic 
activities including all of the retail shops in the city. This sort of ‘delayed real time’ data is 
extremely useful to show spatial patterns and temporal trends of all Venice shops over time 
(Figure 8). If these data were made public on a daily basis, the information would be constantly 
up-to-date and could assist government officials and decision-makers in the formulation of plans 
to manage, for instance, the spread of bars and tourist accommodations, which subtract retail 
space and residences from local citizens.  
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Given the current state of technology, mining the infrequent, yet relentless, trickles of activity that 
impact the built environment on a daily basis would be entirely feasible by employing some of 
the same big data techniques used for fast real-time data mining. Using a big-data mindset to 
intercept structural change at the source --. when the paperwork that precedes construction is filed 
and approved -- would have significant benefits for the present as well as for the immediate 
future (Carrera, 2005).  
In fact, any predictive model of future patterns of behavior would greatly benefit from 
incorporating known changes that are bound to manifest themselves in the not-too-distant future, 
even though at the present they may just exist on paper as approved construction permits or the 
like. Since these approved projects are going to change the material fabric of the city, any future 
model should include them as base data about a future that is almost guaranteed to happen, and 
which will, in turn, affect the rest of future trends all around them. Alas, planning agencies do not 
routinely include approved urban change in their forecasts, even though the data to do so exists 
somewhere in a server, under the same roof, in the same municipal government.  
The closest our teams have come to incorporating plausible future changes into a planning 
exercise was an analysis of the maximum build-out that current zoning regulations would allow 
in Worcester, Massachusetts (Carrera, 2004). As sobering as it is to see one’s town spreading out 
and filling-in with more and more construction, these analyses portray purely hypothetical 
situations, whereas actually capturing data from development plans (Finzel et al., 2007), 
environmental impact assessments (Gomes et al., 2005) and actual construction permits or zoning 
waivers would give us a concrete basis for predicting the probable future. 
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When it comes to accessing slow new data about structures in (slow) real time, our WPI teams 
have explored what could be possible if such data were indeed available, but without ever really 
gaining direct access to it. It is easier for municipal governments to periodically publish these 
data in batches as static files, than to create machine-accessible endpoints to provide real-time 
access to their legacy systems, which are typically old enough to make such efforts quite an uphill 
battle. It is comparatively easier for progressive governments to make available streams of data 
which employ modern, internet-enabled technologies than to try and jerry-rig an old system to do 
the same for permit data, but it is a fair bet to expect that things will change in the foreseeable 
future, as older technologies are replaced with cloud-based systems which in turn will make it 
possible to harvest urban change in ‘slow real time’ as well. 
 

Fast Old Data: the impermanence of ephemeral activities 

Real time data about activities gets old fast. Yet, even old data about activities can be used in 
real-time to enable fast choices in the present day. As we become more cognizant of the fact that 
the real-time data of today quickly becomes the old data of tomorrow, we are confronted with 
hard choices about what data to keep and what to throw away (cf. Carrera, 1997).   
Because data about activities are ephemeral by nature, we have been treating them as essentially 
disposable. Dynamic, real-time data are typically produced for immediate consumption or for 
later comparisons as an aggregate statistic but, typically, little thought is given to potential reuse 
of the same exact data at a later date. Raw data is hardly ever retained or published, and 
fine-grained information is often lost in the publication of overall aggregate statistics about the 
phenomenon. 
A big data approach to fast-aging, real-time data was employed by a team of WPI students who 
studied noise at the Venice Project Center (Calamari et al., 2011). The system consists of a 
mobile app that allows citizens to report noise complaints using a smartphone and an associated 
website which displays all of the noise complaints as they occur. The app records an audio sample 
of the noise, calculates the dB level of the recording, and allows the user to take a picture of the 
alleged source of the noise. The submission of the noise report instantly creates a new datapoint 
on a companion web site (http://www.venicenoise.org) in real-time. On the website, the data 
points are immediately processed and a heat map is produced automatically, as are timelapses that 
can show patterns of noise at each hour of the day, each day of the week and each month of the 
year.  
The ephemeral nature of a noise event is captured in-the-moment, but logs of all noise reports are 
also maintained and can be searched and visualized over time as shown in Figure 9. Each point is 
matched to Venice’s ‘noise zoning maps’, and samples that exceed the permitted dB level are 
highlighted in red on the online the map. The red dots can be clicked to see dB level of the noise 
complaint and to listen to its recording. 
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VeniceNoise is an example of a modern app that uses big data crowdsourcing techniques to 
capture events as they happen, yet it is mindful of the historical importance of these samples over 
time, so it provides tools to archive, search and visualize noise patterns over time. The broad 
lesson for all cities -- old and new -- is that, even though real-time data can be useful in the 
moment, it also gets old almost instantly, so it is important to log it and retain it for future use as 
VeniceNoise does. The patterns that emerge over time are typically more useful than an instant 
snapshot, so it pays to be mindful about the long-lasting aspects of any fast data collected in 
real-time.  

Old data often needs to be accessed quickly and repeatedly to support real-time visualizations for 
a variety of useful purposes. Many VPC applications use old data for fast processes, such as 
autonomous agent models, or real time smartphone applications. For example, a major dynamic 
phenomenon that needs to be taken into account in a variety of present-day contexts in Venice is 
the ebb and flow of tides through the lagoon and the city’s canals. The hydrodynamic behavior of 
currents is important, for example, to determine the ‘flushing capacity’ of a canal, given that a 
good percentage of Venice’s homes still flush sewage into the city’s waterways (Felices et al., 
1997). 
In the 1990’s many teams of WPI students conducted extensive and repeated campaigns to 
manually  the currents in the inner canals of Venice (DeMaio et al., 2012), which allowed us to 
define the ‘typical hydrodynamic behavior’ of each canal segment in various tidal and lunar 
phases (Carrera, 1999). Our data, in turn, was used to design and calibrate a numerical model of 
the inner canal flows (Umgiesser in Caniato et al., 1999). More recently, a WPI team (Angelo et 
al., 2014) applied big data principles to our past datasets and models, and produced an interactive 
visualization which connects the hydrodynamic model to real-time data about current tide levels 
(from our Dashboard) to produce a tide latency model shown in Figure 10, which allows us to 
predict with good approximation the tide levels in every canal of the city hours ahead of time. 
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In Venice, one can already download smartphone apps that show the current and forecasted tides 
in the city, as does the Tides widget in our Venice Dashboard. The cleverest of  these existing 

apps (W.V.F. by ArMa Informatica) basically shows coloured maps of 
pavement elevation contours, zoomed to your location, based on the current 
tide at the main tide gauge in Venice (punta Salute). While not useless, this 
‘smart’ app is good for the here and now, but not that useful for planning 
ahead for a trip during a high-tide event. 
Merging the past with the present and future, we connected the past data to 
the present tide to the future model, and developed an app prototype  called 
Piera Alta (shown in figure 11) which shows how a city can be can go 
beyond ‘smart’ and actually become ‘wise’.  
 
This smartphone app blends the fast and old to produce a useful predictive 
tool for the navigation of pedestrian paths in Venice, during high tides 
(Angelo et al., 2014). It employs sophisticated hydrodynamic models, 

together with real-time water levels to produce location-specific forecasts of inundation levels 
and assists in trip planning while the city is being flooded, all well ahead of time. Although it is 
still in development, Piera Alta is perhaps the best example of an app which combines old data 
together with real time data, and links them both to a future-looking model to go beyond the 
seemingly smart, and actually provide wise advice that travelers can use to plan their trips during 
acqua alta in Venice.  
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Applications like Piera Alta show what’s possible when we apply big data approaches to extract 
fast information from old data, and we hope that these examples can inspire other cities to evolve 
from smart to wise with similar big data approaches blending old data about the built 
environment with real-time events and predictive models. 
 

Fast New Data: Real-time for old cities 

Big Data has acquired a broad appeal in the urban technology circles in part because it often 
focuses on what is fast and new, like commuting patterns in London recorded by the Oyster card 
system (Batty et al., 2013), or visualizations of phone calls made and received over the cellular 
network (Ratti et al, 2006). While collected in real time by public or private companies, (mostly 
for accounting purposes), these types of big data are not usually displayed in real time, but 
frequently represent the post-processing of a day, week, month or year of transaction data, 
typically obtained from some major network operator, such as a public transit agency or a 
telecommunications company. The patterns that emerge from these ex-post visualizations of big 
data can be useful to analyze both large and small scale processes, which in turn can lead to better 
planning or more efficient management of our cities. 
Conversely, ‘dashboard systems’, really harvest and visualize live data streams and other internet 
data in true real time. While the data instantly published by these dashboards are arguably less 

‘big’ than a year’s worth of 
commute data for a city 
like London, they can, if 
logged over time, add up 
to really big data that can 
reveal interesting 
aggregate patterns of 
behavior. 
In Venice, we have 
implemented a real-time 
dashboard based on the 
initial efforts conducted at 
the Centre for Advanced 
Spatial Analysis (CASA) 
at University College 
London (UCL), adapting 
the type of data collected 

and visualized  by the ‘widgets’ that compose the dashboard to the peculiar needs of an old 
heritage city which we show in figure 12 (Brann et al., 2013).  
While Venice has many of the same needs and characteristics of all modern cities, such as daily 
commuter traffic, air pollution and the like, we chose to focus our Venice Dashboard 
(http://dashboard.veniceprojectcenter.org) on specific phenomena that affect Venice in very 
unique ways, namely the ‘dual tides’ of water and people which flood the city and negatively 
affect the normal functioning of the city.  
For the water tides, our dashboard taps into the city’s tidal forecasting website to provide 
real-time updates every 5 minutes of the current tide level, using color codes to signify moderate 
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to severe high-tides. The Venice Dashboard even shows a red banner at the top of the page to 
warn of possible disruptions to the waterbus service, when the levels reach certain critical 
thresholds that make some of the bridges too low for waterbuses to pass under, as indicated in 
figure 12 . Another series of widgets collect data about the human tide of tourist arrivals by 
airplane, cruise ships and trains, using custom-designed widgets that constantly harvest internet 
data, such as FlightStats, Maritime Traffic and Railroad reservation systems.  

  
All three widgets in Figure 13 extract tourist arrival estimates by continuously mining big data 
from the web in real time.  

Together, these numbers add up to a plausible estimate of 
the number of tourists arriving in Venice every single day, 
as displayed in the Tourist Arrivals widget in figure 14   
which summarizes the arrivals and splits them statistically 
into Overnight visitors and Day Trippers. 
 
Similarly, we also harvest hotel reservations 
(www.Booking.com), hostels (www.Hostels.com) and 
Airbnb (using its APIs) to determine the number of beds 
that are occupied by tourists every night as shown in figure 
15,  giving us the total presence of tourists in the city at 
any moment. 

 
 

​ ​  
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The number of tourists thus obtained can then be juxtaposed with the declining number of 
Venetians in figure 16 published at midnight every day on the City’s website (Comune, 2016).  
 

In the foreseeable future, it is likely that the 
City of Venice will need to restrict access to 
tourists in order to maintain a sustainable 
balance between its inhabitants and its 
visitors and our system is already accurate 
enough to support such tourist management 
measures (Carrera, 2016b).  The Venice 
Dashboard could be made even more precise 
if the city’s transportation agencies released 
transit ticketing and parking data, which 
currently lies hidden in their database 

systems. The availability of such data would allow us to track these phenomena even more 
precisely, which in turn would enable a more balanced management of the visitors, who 
outnumber the citizens on any average day of the year. 

Big data, captured in real time, is useful in all cities, old and new. Older heritage cities are no 
different than newer ones in their need for fast new data to manage activities on a daily basis. If 
anything, heritage cities have more big data needs that newer ones, due to the simple fact that 
they to have to service and manage large numbers of visitors in addition to their own citizens.  
 

Wise Cities: the next stage in the evolution of ‘smart cities’ 

Just like the companion term ‘Big Data’, the ‘Smart City’ moniker has been popularized 
throughout the world for the past several years as the new frontier for municipal governments. 
Some are questioning its value and are proposing a piecemeal approach they call the ‘clever city’ 
which aims at getting truly useful applications out there for the immediate benefit of citizens, 
while we figure out what ‘smart city’ really means (Atkin, 2015). While it does mean different 
things for different municipalities, the overall gist of the ‘smart city’ appellation conjures up 
images of a digital cosmopolis governed through intelligent systems with access to a trove of real 
time data. Big data is what feeds the smart city in the public’s imagination and we have seen 
many examples of clever big data visualizations in the media as well as in academic publications. 
Wise cities are not only ‘clever’ (Atkin, 2015) and they also go beyond the glitz and wiz-bangery 
of smart city applications and actually embed these technologies into their day-to-day operations, 
as the office of New Urban Mechanics has been doing for the City of Boston for more than a 
decade (http://newurbanmechanics.org/). An often-cited example of their practical approach to 
bringing innovation to the public sector is the application called StreetBump, which pinpoints the 
location of potholes in Boston using the accelerometers inside smartphones to create a 
crowdsourced map of road conditions every day (Carrera et al., 2013). We developed this 
pioneering application as the logical consequence of prior experiments we had conducted at the 
Venice Project Center -- to map boat wakes (Carino and Marshall, 2006) -- and in Boston, where 
we tested a hardware pothole-mapping system in (DeMarco and Stedman, 2007). Each of these 
prior research projects could be labelled as a ‘smart city’ application, even though they predate 
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the widespread diffusion of the ‘smart city’ tagline. Learning from our past experiences, we 
produced a ‘wise city’ application with StreetBump, which represents the natural evolution of the 
initial smart ideas, and has been successfully embedded into city operations to prioritize road 
maintenance in Boston. StreetBump is a ‘wise city’ application because it is based on past 
experience, it is clever, cheaper, faster and open to inputs from citizens as well as city workers, 
and it actually improves city services on a daily basis (Carrera et al., 2013).  
Wise cities, like Boston, publish their open data frequently and reliably 
(http://data.cityofboston.gov); they push out real-time data when possible, as was done by 
Boston’s MBTA (Barry and Card, 2014); they are cognizant of their past and are able to 
extrapolate past information into the future, while also being knowledgeable about the present. 
Old cities like Venice and Boston cannot afford to be just ‘clever’ or ‘smart’ and ignore their past, 
so they need to go beyond clever/smart city applications and leverage the same technologies to 
capture the backlog of old slow data from the past, and to intercept slow real time changes as they 
happen, while still extracting useful patterns from fast new data and logging these away for future 
use as fast old data. 
Wise cities blend past and present data not only to manage the day-to-day, but also to foresee 
realistically what may happen in the future. Wise city applications provide a complete, fungible 
record of what led to today’s situation so that the future can be more predictable. They adopt 
state-of-the-art technologies like autonomous agent models, social collaborative filtering, 
crowdsourcing, micro-funding and other modern tools and adapt them to the big old data of the 
past as well as to the live streams of real-time big data of the present.  
Wise city applications are not rigid and fixed, but rather open and constantly improving in an 
agile fashion. They do not become obsolete, but keep up with changing technology, smoothly and 
routinely. They get better with age. They do not create walled-gardens behind proprietary fences, 
nor do they lock data into silos.  They make all data available to other applications and monetize 
only the transactions that are generated by the ‘agents of change’, by applying to information the 
same pay-as-you-use standards that are applied to other municipal infrastructure such as water 
and sewage (Carrera, 2004). 
Wise cities treat all documentation as information and cumulatively collect all plan-demanded 
data generated by ongoing projects, developments and contracts to arrive at a state of 
plan-readiness whereby all of the existing information about present and past is made easily 
accessible to citizens, planners, professionals and decision-makers (Carrera and Hoyt, 2006).  
A wise urban app does not just collect citizen complaints (Commonwealth Connect, 2016), but 
actually provides accurate measurements that are instantly mapped against allowable rules, like 
VeniceNoise does vis a vis the official noise zoning regulations (Calamari et al., 2011). Clever 
apps allow citizens to contribute information with their phone by actively recording a situation 
(Schloss et al., 2011), but wise ones achieve the crowdsourcing of practical information without 
any conscious citizen intervention, by simply being turned on and running in the background as 
we go about our daily tasks, as StreetBump does (Carrera et al., 2013). Wise city applications 
don’t just assist visitors in exploring the heritage of a city with clever location-aware apps and 
virtual reality overlays, but go beyond the show-and-tell and involve users in the preservation of 
monuments and public art, as PreserVenice does with its micro-donation approach to 
crowdfunding the restoration of historical artifacts (Carrera, 2012). 
Wise city apps combine knowledge about the structures of the past, together with real-time data 
from the here and now, to facilitate activities in the future, as does our bridge clearance app 
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(bridge.veniceprojectcenter.org) which assists Venice’s emergency boats during high tides by 
instantly identifying low-clearance bridges that could be too low to pass under at high tide, 
depending on the height of the boat’s cabin (Figure 17). 
 
 

 
 
This wise app relies on old big data about bridge clearances and taps into a government 
tide-gauge in real time to show the current tide. Users can manipulate the slider at the bottom of 
the screen to set the height of their boat and instantly the map will show in red all of the bridges 
that are impassable by that boat, allowing ambulance, police or fire boats to re-route around them 
on the way to an emergency. 
 
We hope that the examples from our work in Venice contained in this paper can point the way 
towards a more balanced approach to big data that focuses not just on present-day human 
activities and behaviors but also on the long tail of old data about the built environment that 
changes in slow real time, since real city knowledge is about both the old and the new, and 
incorporates activities as well as structures, which all together can better inform our decisions, 
and turn clever or smart cities into ‘wise cities’ that are truly effective in the maintenance, 
management and planning of our built environment. 
 
 

NOTES 

1. The examples in this paper are based on research developed and supervised by the author and 
conducted in Venice since 1988 by over 750 engineering and science students from the Worcester 
Polytechnic Institute (WPI) during their two-month research trips to the Venice Project Center 
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(VPC), augmented by hundreds of volunteers and funded through academic grants and 
professional contracts through the consulting firm Forma Urbis s.r.l. and powered by the 
technology spin-off called City Knowledge LLC. Some examples also come from the author’s 
experience as director of WPI’s Boston Project Center between 1997 and 2007. 
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