(2)

Q1./		ent investigated the reactions of copper carbonate and copper oxide with dilute ochloric acid.	
	(a)	A student wanted to make 11.0 g of copper chloride.	
		The equation for the reaction is:	
		$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$	
		Relative atomic masses, A_r : H = 1; C = 12; O = 16; Cl = 35.5; Cu = 63.5	
		Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.	
		Mass of copper carbonate = g	(4)
	(b)	The percentage yield of copper chloride was 79.1 %.	
		Calculate the mass of copper chloride the student actually produced.	

Actual mass of copper chloride produced = g

(c)	Look at the equations for the two reactions:			
	Reaction 1 $CuCO_3(s) + 2HCI(aq) \rightarrow CuCI_2(aq) + H_2O(I) + CO_2(g)$			
	Reaction 2 $CuO(s) + 2HCI(aq) \rightarrow CuCI_2(aq) + H_2O(I)$			
	Reactive formula masses: $CuO = 79.5$; $HCI = 36.5$; $CuCI2 = 134.5$; $H2O = 18$			
	The percentage atom economy for a reaction is calculated using:			
	Relative formula mass of desired product from equation × 10 Sum of relative formula masses of all reactants from equation	00		
	Calculate the percentage atom economy for Reaction 2.			
	Percentage atom economy = %	(3)		
(d)	The atom economy for Reaction 1 is 68.45 %. Compare the atom economies of the two reactions for making copper chloride.			
	Give a reason for the difference.			
		(1)		
	(Tot	al 10 marks)		

1

1

1

1

1

1

M1.

(a) $M_r \text{ CuCl}_2 = 134.5$

 $M_{\rm r}$ CuCO₃= 123.5

correct answer scores 4 marks

moles copper chloride = (mass / M_r = 11 / 134.5) = 0.0817843866

1

Mass CuCO₃ (=moles × M_2 = 0.08178 × 123.5) = 10.1(00)

accept 10.1 with no working shown for 4 marks

(b) $\frac{79.1}{100} \times 11.0$

or

11.0 × 0.791

8.70 (g)

accept 8.70(g) with no working shown for 2 marks

(c) Total mass of reactants = 152.5

<u>134.5</u>

152.5

allow ecf from step 1

88.20 (%)

1

allow 88.20 with no working shown for 3 marks

(d) atom economy using carbonate lower because an additional product is made **or** carbon dioxide is made as well

allow ecf

[10]