
Galaxy Auth Documentation

Configure Auth

Universe_wsgi.ini
auth_config_file
auth_debug

Auth_conf.xml
Processing order
TYPE

ActiveDirectory
AlwaysReject
LocalDB

FILTER
Common options

Writing custom authentication providers
Python code

Configure Auth

To add (or use) alternate Authentication modules within galaxy you need to configure it to your
setup in auth_conf.xml file.

Universe_wsgi.ini

There are two optional changes to the master config file.

auth_config_file

The name of the config file that the auth module uses. Defaults to config/auth_conf.xml. This is
relative to the GALAXYROOT directory.

auth_debug

Enables a bunch of extra logging output to help identify what is going wrong with the auth modules.
This will cause the config options to be displayed in the log which will include system passwords
for at least the ActiveDirectory module so should not be enabled on a production system.

Auth_conf.xml

This file controls how the auth module functions. See the auth_conf.xml.sample file in
GALAXYROOT/config directory for some examples of how this might look.

<?xml version="1.0"?>
<auth>
​ <authenticator>
​ ​ <type>TYPE</type>
​ ​ <filter>FILTER</filter>
​ ​ <options>
​ ​ ​ <auto-register>BOOL2</auto-register>
​ ​ ​ <allow-register>BOOL3</allow-register>
​ ​ ​ <allow-password-change>BOOL2</allow-password-change>
​ ​ ​ PROVIDER_SPECIFIC_OPTIONS
​ ​ </options>
​ </authenticator>
​ ...
</auth>

Figure: syntax of auth_conf.xml file

Processing order

The authentication providers are executed in the order that they (authenticator tag) are presented
in the file. The ordering is important as some providers can cause an immediate halt to
authentication whereas others allow auth to continue down the chain.

TYPE

There are a number of builtin authentication providers. Sites can also implement their own
providers and install them in the GALAXYHOME/lib/galaxy/auth/providers package.

The following Authenticators are built into Galaxy:

ActiveDirectory

A provider that uses ldap to search and bind to a Microsoft Active Directory. If you cannot bind
using the email address provided by the user then it has the option to search the Active Directory
for their username and then bind with it. The presence of the search-filter option enables the
search functionality.

Table: ActiveDirectory provider specific options

Option Description

server The connection URL used by both the search and bind
functions.
e.g. ldap://ADDOMAIN.company.com

search-filter ^ The LDAP search filter used to find the required user details to
bind to AD.
e.g. (&(objectClass=user)(mail={username})).

search-base ^ The basename of the AD.
e.g. dc=ADDOMAIN,dc=company,dc=com

search-user ^ The username to use to bind to the AD in order to search it.
e.g. galaxy@ADDOMAIN.company.com

search-password ^ The password for above username

search-fields ^ A comma-separated list of AD fields to retrieve in search.
e.g. sAMAccountName

bind-user ^# The username to perform to check (by binding with it).
e.g. {sAMAccountName}@ADDOMAIN.company.com

bind-password ^# The password for above account
e.g. {password}

continue-on-failure Should later authentication provides be tried if this one fails (any
error including wrong password, or configuration error). In most
cases this should be False

auto-register-username ^# The format for the galaxy username when auto-registering the
user.
e.g. {sAMAccountName}

^ allows substitutions of {username} and {password} (which are the values typed by user)
allows substitutions of {ADFIELD} where ADFIELD is a field specified in search-fields option.

<authenticator>​
 <type>activedirectory</type>​
 <filter>'{username}'.endswith('@company.com')</filter>​
 <options>​
 <allow-register>No</allow-register>​
 <auto-register>Yes</auto-register>​
 <server>ldap://ADDOMAIN.company.com</server>​
 <search-filter>(&(objectClass=user)(mail={username}))</search-filter>​
 <search-base>dc=ADDOMAIN,dc=company,dc=com</search-base>​
 <search-user>galaxy@ADDOMAIN.company.com</search-user>​
 <search-password>SOMESECRET</search-password>​
 <search-fields>sAMAccountName</search-fields>​
 <bind-user>{sAMAccountName}@ADDOMAIN.company.com</bind-user>​
 <bind-password>{password}</bind-password>​
 <continue-on-failure>False</continue-on-failure>​
 <auto-register-username>{sAMAccountName}</auto-register-username>​
 </options>​
</authenticator>

Figure: example configuration for ActiveDirectory provider using username lookup

<authenticator>​
 <type>activedirectory</type>​
 <filter>'{username}'.endswith('@ADDOMAIN.company.com')</filter>​
 <options>​
 <allow-register>No</allow-register>​
 <auto-register>Yes</auto-register>​
 <server>ldap://ADDOMAIN.company.com</server>​
 <bind-user>{username}</bind-user>​
 <bind-password>{password}</bind-password>​
 <continue-on-failure>False</continue-on-failure>​
 <auto-register-username>{sAMAccountName}</auto-register-username>​
 </options>​
</authenticator>

Figure: example configuration for ActiveDirectory provider using direct bind method

AlwaysReject

A simple provider that rejects all email addresses that match its filter. This is useful for blacklisting
certain addresses.

LocalDB

Uses the local Galaxy DB to check their username/password combination. This is used in the
default configuration of the auth module.

FILTER

An optional filter which decides whether or not to attempt this provider. This is a python string that
is evaluated (within a restricted python environment) and if it equals True then this auth provider is
executed. This can be useful for speeding up authentication by not trying providers that will fail for
a given username. The field will accept {username} and {password} substitutions.

Common options

These options are common to all providers

Option Description

auto-register True = This provider should automatically register users when
they first login.
False* = denies access and requests they register.

allow-register True* = Yes, allow registration (ignores password check)
False = No, not allowed
Challenge = allow registration if their username/password
checks out

allow-password-change True = users can change their password (only supported by
LocalDB module)
False* = users cannot change password (gives them an error
message saying so)

Writing custom authentication providers

This sections goes through the details required to create your own auth provider. To add a new
provider you need to create the following two files and place them in the
GALAXYHOME/lib/galaxy/auth/providers package (don’t add them to git; they should be ignored
anyway)

Python code

To implement your own provider you simply create a new python class that extends the
‘AuthProvider’ class. The class needs to contain (a minimum of) one attribute and implement two
methods which are described in the example below. The module needs to contain one variable.

The attribute (plugin_type) needs to contain a string value that matches the module name (e.g.
‘goodguysonly’) without the ‘.py’

The first method (authenticate) takes a username (email)/ password and is used during registration
when the Authenticator is set to “Challenge” mode (allow-register option).

The second method (authenticateUser) performs a similar task but takes a user object instead of a
username. This method is used during regular authentication to check their username/password
match.

Finally the module needs to contain the proper __all__ variable so that they auth module can find
the module implementation. This variable needs to be set to a list of strings and one of these
strings matching the name of the providers class (e.g. ‘GoodGuysOnly’)

The naming convention used here is the filename should be all lowercase with the same name as
the class inside it. e.g. goodguysonly.py contains GoodGuysOnly class

import re, string​
from ..providers import AuthProvider​
​
import logging​
log = logging.getLogger(__name__)​
​
class GoodGuysOnly(AuthProvider):​
 '''A simple authenticator to demo how to build your own'''​
 ​
 plugin_type = 'goodguysonly'​
​
 def authenticate(self, username, password, options):​
 '''​
 See abstract method documentation​
 '''​
 log.debug("Username: %s" % username)​
 log.debug("Options: %s" % options)​
​
 return (username == "goodguy@galaxy.org" && password == "secret",​
 self._stripUsername(username))​
 ​
 def authenticateUser(self, user, password, options):​
 '''​
 See abstract method documentation​
 '''​
 ​

 log.debug("User: %s, GoodGuysOnly: %s" % ​
 (user.email, user.email == "goodguy@galaxy.org" && password == "secret"))​
​
 return (user.email == "goodguy@galaxy.org" && password == "secret",​
 self._stripUsername(username))​
​
 def _stripUsername(self, username):​
 pattern = re.compile('[\W\-]+')​
 return pattern.sub(username, string.printable)​
​
​
__all__ = ['GoodGuysOnly']

Figure: example implementation of a custom authentication provider (goodguysonly.py)

	Galaxy Auth Documentation
	Configure Auth
	Universe_wsgi.ini
	auth_config_file
	auth_debug

	Auth_conf.xml
	Processing order
	TYPE
	ActiveDirectory
	AlwaysReject
	LocalDB

	FILTER
	Common options

	
	Writing custom authentication providers
	Python code

