
Motivation
Anti-entropy (Apache Cassandra repairs) is essential for every Apache Cassandra cluster to
fix data at rest inconsistencies. Frequent data deletions and downed nodes are common
causes of data inconsistency. A few open-source orchestration solutions that trigger repair
externally are available, as many large users have needed to figure out a scalable repair
solution. However, multiple custom solutions have led to a lot of confusion in the community.
Therefore, the repair activity, like Compaction, should be an integral part of Cassandra to call
it a complete solution.

The proposal is to align one solution among the existing solutions and make it part of the
core Cassandra. Here is the design for one of the solutions:

Inside Cassandra, there are multiple repairs we would have to schedule:
1) Full Repair
2) Incremental Repair
3) Paxos Repair
4) Preview Repair

The design of the scheduler should be capable of extending multiple repair categories with a
minimal code change, and all repair types should progress automatically with minimal
manual intervention.
Migrating[1] (and rollback) to/from incremental repair has been extremely challenging,
especially in a large fleet. One of the design principles is to make it almost touchless from
the operator’s point of view.

The Scheduler
Keeping the above motivation in mind, this design embarks on our journey to have the repair
orchestration inside Cassandra itself, which will repair the entire ring.

A dedicated thread pool is assigned to the repair scheduler at a higher level. The repair
scheduler inside Cassandra maintains a new replicated table under a distributed
system_distributed keyspace. This table maintains the repair history for all the nodes, such
as when it was repaired the last time, etc. The scheduler will pick the node(s) that run the
repair first and continue orchestration to ensure every table and all of their token ranges are
repaired. The algorithm can also run repairs simultaneously on multiple nodes and splits the
token range into subranges with the necessary retry to handle transient failures. This has
been running for some time, and over that period has become reliable enough to configure it to
just auto-start with a new Cassandra cluster, requiring no operator intervention.

Due to this fully automated repair scheduler inside Cassandra there is no dependency on the
control plane, significantly reducing our operational overhead.

https://stackoverflow.com/questions/42182984/how-do-i-enable-incremental-repair-on-cassandra-2-1-13

Detailed Design
This section deep-dives into the design by categorizing it into three parts:

1. Global view of all nodes about which node is currently running repair, and the last
time it ran the repair.

2. Supporting multiple repair types, each working independently of the other without any
interference.

3. Flow diagram showing how a given repair works on a Cassandra node

Global View
Cassandra’s system_distributed keyspace has already been replicated. The idea here is to
add two tables with the following schema to have a globally consistent view among the
nodes:

Schema

Table 1 auto_repair_history

This table tracks the repair status for each node for a given repair type.
Column Name Data Type Description

repair_type text (PK) Repair type; possible values:
> full
> incremental

host_id uuid (CK) UUID of a Cassandra node

repair_start_ts timestamp Timestamp when a node started repairing

repair_finish_ts timestamp Timestamp when a node completes repairing

repair_turn text The node’s current repair status, possible values:
>
> MY_TURN: The node is running repair.
> MY_TURN_DUE_TO_PRIORITY: The node is running
repair because the admin explicitly prioritized it.
This is not a common scenario.

witness_deleted_hosts set<uuid> It is useful to determine when to delete the
metadata entry of this table for the node that
departed the ring.

The scheduler uses Gossip as the source of truth
for available nodes in the ring.

When a node leaves the ring, then the scheduler
would have to delete its metadata entry from this
table for that node. In the worst case, if nodes
have different views of the topology, then it could
falsely delete this metadata entry.

Let’s understand with an example - if there are
five nodes in the ring: N1, N2, N3, N4, N5 and N5
leaves the ring.

When N1, N2, N3, and N4 go through a check, they
will all append as witnesses if their Gossip view
tells N5 is deleted.

repair_type: Full
Host_id: N5

deleted_host: <N2,N3,N4,N5>

Now, anytime the scheduler sees the quorum number
of live nodes (3 out of 4) have witnessed N5’s
deletion, then it can safely remove N5’s metadata
entry.
This won’t be needed after CEP-21 (Transactional
Metadata).

delete_hosts_update_time timestamp The last time the deleted_hosts was updated. In the
example above, if N5 were falsely marked as deleted
by N1, we would have to clear N5’s deleted_hosts
column; after 2 hours, deleted_hosts would be
cleared.
The 2 hours is chosen because a topology mismatch
should generally settle down within that duration.

force_repair boolean If this flag is set, then the node will go through
the repair cycle regardless. The default is “false”

This is useful if an admin wants to force one or
more nodes to undergo repair, say, when a node
restarts, before decommissioning. An admin can set
this flag through nodetool.

When the admin sets this flag, the scheduler’s
natural list of nodes will still continue the
repair, but on top of that, these additional nodes
will also undergo repair.

Table 2 auto_repair_priority

This table tracks any explicit priority set by the admin. By default, the scheduler will select
the nodes’ based on the oldest repair_finish_ts among all the nodes in a cluster. If, for
whatever reason, an admin wants to prioritize a few nodes, then they can prioritize those
nodes through a nodetool command. Those priority nodes are stored in this table, and when
set, those nodes are prioritized over other nodes.

Column Name Data Type Description

repair_type text (PK) Repair type; possible values:
> full
> incremental

repair_priority set<uuid> List of nodes the schedulers
should prioritize repair.

The diagram below explains that each node in a Cassandra cluster has the same global
view of the above two tables. As a result, everyone can make a deterministic decision about
whether to undergo the repair.

Support For Multiple Repair Types
Apache Cassandra needs to run multiple repair types to guarantee data consistency. The
scheduler can run each repair type as a separate lightweight thread inside a Cassandra, and
that thread will continue to track the lifecycle of a given repair type. The thread does not
consume many resources because it runs every 5 minutes, reads/updates the metadata
tables above-mentioned, and then schedules repair sessions serially. The repair session
would do the actual anti-entropy, the exact mechanism when the repair is triggered through a
traditional nodetool command, a.k.a. nodetool repair.

Since each repair type is managed through a separate thread, and the status for each repair
type is also tracked separately in the metadata tables, they operate independently without
interfering with each other, as shown in the diagram below.

https://docs.google.com/document/d/1CJWxjEi-mBABPMZ3VWJ9w5KavWfJETAGxfUpsViPcPo/edit?pli=1#heading=h.nudhl819enm0
https://docs.google.com/document/d/1CJWxjEi-mBABPMZ3VWJ9w5KavWfJETAGxfUpsViPcPo/edit?pli=1#heading=h.nudhl819enm0

Repair Flow On A Node
This section covers a detailed flow state transition for each repair type. Let’s use Full repair
as an example. The Incremental repair would work the same way.

The Full repair scheduler thread in Cassandra would work as follows:

● Periodic check: At every 5-minute interval, it will check the global view of the repair in
the cluster and determine whether this node should start a repair.

● Priority check: Pull the priority from auto_repair_priority and see if it is listed in the
priority. If so, then start repairing.

● Parallelism: Pull the global view from auto_repair_history on which nodes run repair.
Start repairing if the total number of nodes currently running repair in the Cassandra
is smaller than the allowed parallelism.

● Announce Starting: Once the node decides it’s their turn to repair, update
auto_repair_history column repair_start_ts with the current timestamp.

● All Keyspaces: The node will consider all the replicated keyspaces (skipping
LocalStrategy) and process them sequentially.

● All Tables: The node will consider all the tables inside a keyspaces and process them
sequentially. There will be new CQL table properties to control enabling/disabling at a
table-level granularity. By default, they are enabled, which means all tables inside a
keyspace will go through a repair cycle.

$> CREATE TABLE t1 (
a int PRIMARY KEY,
b int,
c int

) WITH additional_write_policy = '99p'
….

AND read_repair = 'BLOCKING'
AND speculative_retry = '99p'
AND repair_full = {'enabled': 'true'}
AND repair_incremental = {'enabled': 'true'};

$> ALTER TABLE t1 WITH repair_incremental = {'enabled':'false'}

● Split Token Range: A repair can succeed if the data it touches is small enough;
otherwise, it fails and jeopardizes the live traffic. By default, the token range will be
broken down into 16 sub-ranges, and each range will go through the repair
sequentially.

● Repair A Range: A selected token range will go through the repair cycle with a
timeout set at three hours because, many times, a repair session just hangs forever.
If a repair session fails, then it will be retried three times. If it fails, the scheduler will
log a failure message, emit a metric, and then move to the next token range.
Conversely, if it succeeds, then it emits a success metric.

● Announce Ending: Once the node completes all of the keyspaces, tables, and token
ranges, it will update the auto_repair_history column repair_end_ts with the current
timestamp.

https://docs.google.com/document/d/1CJWxjEi-mBABPMZ3VWJ9w5KavWfJETAGxfUpsViPcPo/edit?pli=1#heading=h.y1l50sh3lwxw
https://docs.google.com/document/d/1CJWxjEi-mBABPMZ3VWJ9w5KavWfJETAGxfUpsViPcPo/edit?pli=1#heading=h.y1l50sh3lwxw

Here is the flow diagram that captures the state transition on each node.

Configuration

Table Level
A given repair type can be enabled or disabled per table level through table-level parameters

$> CREATE TABLE t1 (
a int PRIMARY KEY,
b int,
c int

) WITH additional_write_policy = '99p'
….

AND read_repair = 'BLOCKING'
AND speculative_retry = '99p'
AND repair_full = {'enabled': 'true'}
AND repair_incremental = {'enabled': 'true'};

$> ALTER TABLE t1 WITH repair_incremental = {'enabled':'false'}

YAML Configuration

Cassandra.yaml Snippet

auto_repair:
enabled: true
repair_type_overrides:

full:
enabled: true
number_of_repair_threads: 2
repair_max_retries: 2
repair_primary_token_range_only: true

incremental:
enabled: true
number_of_repair_threads: 1
repair_max_retries: 3
repair_primary_token_range_only: false

The following Yaml configuration options are supported, with a nodetool capability to get/set
them.

Repair Scheduler Global Settings

Param Default Description

enabled false enable/disable auto repair globally, overrides all
other settings. It can be modified dynamically.

If it is set to false, then no repair will be
scheduled, including full and incremental repairs by
this framework.

If it is set to true, then this repair scheduler
will consult another config available for each
RepairType, and based on that config, it will
schedule repairs.

This flag controls the creation of a new lightweight
monitoring thread. Hence, it is not supported
dynamically. Once a thread is spun, another flag (in
the below) will determine whether a given repair
type is allowed.
In short, we have two flags controlling the
behavior:

1. This flag Controls whether to create a thread or
not
2. Another flag below controls whether we want to
allow a given repair or not. That flag can be
controlled dynamically so that admin can stop repair
anytime dynamically.

repair_check_interval 5m The interval between successive checks for the
repair scheduler to check if either the ongoing
repair is completed or if none is going, then check
if it's time to schedule or wait.

The default is 5m. Users should not have to
configure it at all. It just tells the interval
between two subsequent checks.
Theoretically, in a rare case, an admin might want
to. If they have an extremely tiny table, data
consistency is very important, and they want to
repair to be scheduled every 2m interval, the
interval could be reduced from 5 m to, say, 10s.

history_clear_delete_hosts_b
uffer_interval

2h When any nodes leave the ring, then the repair
schedule needs to adjust the order, etc.

The repair scheduler keeps the deleted hosts
information in its persisted metadata for the
defined interval in this config.

This information is useful so the scheduler is
absolutely sure that the node is indeed removed from
the ring, and then it can adjust the repair schedule
accordingly.

So, the duration in this config determines for how
long deleted host's information is kept in the
scheduler's metadata.

repair_max_retries 3 Number of times to retry a failed repair session
before moving it to the next repair session.

repair_retry_backoff 1m The back-off time for retrying a repair session

incremental_repair_disk_h
eadroom_reject_ratio

0.2 This setting is only applicable if you have
incremental repair enabled. At least 20% of
disk must be unused to run incremental repair.

Incremental repair could make the disk 100% full in
the worst-case scenario and it can jeopardize the
live-traffic. This setting will automatically stop
the ongoing and future incremental repairs if the
current disk usage is >80%. More details here.

Repair Type Settings

Parameter Default Description

repair_type_overrides
N/A

Determines which repair to run. Possible
values:
> full
> incremental

This is how it would look in the yaml
auto_repair:
enabled: true
repair_type_overrides:
full:
enabled: true

incremental:

enabled: false

enabled false enable/disable auto repair for the given
repair type

repair_by_keyspace false auto repair is default repair table by
table, if this is enabled, the framework
will repair all the tables in a keyspace in
one go.

number_of_subranges 16 The number of subranges to split each
to-be-repaired token range into:

the higher this number, the smaller the
repair sessions will be.

How many subranges to divide one range
into? The default is 1.

If you are using v-node, say 256, then the
repair will always go one v-node range at a
time; this parameter, additionally, will
let us further subdivide a given v-node
range into subranges.

With the value “1” and v-nodes of 256, a
given table on a node will undergo the
repair 256 times. But with a value “2,” the
same table on a node will undergo a repair
512 times because every v-node range will
be further divided by two.

If you do not use v-nodes or the number of
v-nodes is pretty small, say 8, setting
this value to a higher number, say 16, will
be useful to repair on a smaller range, and
the chance of succeeding is higher.

But this behaviour can be completely
overridden and one can specify their own
algorithm for the split. This was discussed
with Chris and Andy extensively and then
this new option "token_range_splitter"
(below property) got added.

token_range_splitter DefaultAutoRepairTo
kenSplitter

* DefaultAutoRepairTokenSplitter.class:
This is the default option. It splits the
tokens based on the token ranges owned by
this node divided by the number of
'number_of_subranges'

* UnrepairedBytesBasedTokenRangeSplitter:
Splits token ranges based on the data size
in SSTable. It can be configured as
follows, basically it has an option to add
a cap on one repair session as well max cap
at a table level

token_range_splitter:
class_name:UnrepairedBytesBasedTokenRangeSplitter
parameters:
max_bytes_per_schedule: 200MiB
subrange_size: 100MiB

number_of_repair_threads 1 The number of repair threads to run for a
given invoked Repair Job.

Once the scheduler schedules one repair
session, then how many threads to use
inside that job will be controlled through
this parameter.

This is similar to -j for repair options
for the nodetool repair command.

parallel_repair_count 0 The number of repair sessions that can run
in parallel in a single group

The number of nodes running repair
parallelly. If parallel repaircount is set,
it will choose the larger value of the two.
The default is 3.

This configuration controls how many nodes
would run repair in parallel.

The value “3” means, at any given point in
time, at most 3 nodes would be running
repair in parallel. These selected nodes
can be from any datacenters.

If one or more node(s) finish repair, then
the framework automatically picks up the
next candidate and ensures the maximum
number of nodes running repair do not
exceed “3”.

parallel_repair_percentage 3 the number of repair sessions that can run
in parallel in a single group as a
percentage of the total number of nodes in
the group [0,100].

The percentage of nodes in the cluster that
repair parallelly. If a
parallel_repair_count is set, it will
choose the larger value of the two.

The problem with a fixed number of nodes
(the above property) is that in a
large-scale environment, the nodes keep
getting added/removed due to elasticity, so
if we have a fixed number, then manual
interventions would increase because, on a
continuous basis, operators would have to
adjust to meet the SLA.

The default is 3%, which means that 3% of
the nodes in the Cassandra cluster would be
repaired in parallel.

So now, if a fleet, an operator won't have
to worry about changing the repair
frequency, etc., as overall repair time
will continue to remain the same even if
nodes are added or removed due to
elasticity.

Extremely fewer manual interventions as it
will rarely violate the repair SLA for
customers

sstable_upper_threshold 10000 The upper threshold of SSTables allowed to
participate in a single repair session

Threshold to skip a table if it has too
many sstables. The default is 10000. This
means, if a table on a node has 10000 or
more SSTables, then that table will be
skipped.

This is to avoid penalizing good tables
(neighbors) with an outlier.

A metric "SkippedTokenRangesCount" will be

incremented if token ranges are skipped.
So, the operator needs to set up an alarm
on this metric.

min_repair_interval 24h The minimum time is in hours between
repairing the same node again. This is
useful for extremely tiny clusters, say
five nodes, which finish repair quickly.

The default is 24 hours. This means that if
the scheduler finishes one round on all the
nodes in < 24 hours. On a given node, it
won’t start a new repair round until the
last repair conducted on a given node is <
24 hours.

ignore_dcs <Empty> Specifies a denylist of data centers to not
repair.

This is useful if you want to completely
avoid running repairs in one or more data
centers. By default, it is empty, i.e., the
framework will repair nodes in all the data
centers.

repair_primary_token_range_only true Set this 'true' if AutoRepair should repair
only the primary ranges owned by this node;
else, 'false' is the same as -pr in
nodetool repair options.

force_repair_new_node false Configures whether to force immediate
repair on the newly joined node - default
it is set to 'false'; this is useful if you
want to repair new nodes immediately after
they join the ring.

table_max_repair_time 6h The maximum time that a repair session can
run for a single table. Max time for
repairing one table on a given node, if
exceeded, skip the table. The default is 6
hours.

Let's say there is a Cassandra cluster in
that there are 10 tables belonging to 10
different customers. Out of these 10
tables, 1 table is humongous. Repairing
this 1 table, say, takes five days in the
worst case, but others could finish in just
1 hour. Then we would penalize nine
customers just because of one bad actor,
and those nine customers would ping an
operator and would require a lot of
back-and-forth manual interventions, etc.

So, the idea here is to penalize the
outliers instead of good candidates. This
can easily be configured with a higher
value if we want to disable the
functionality.

repair_session_timeout 3h Repair session timeout - this is applicable
for each repair session. The major issue
with Repair is a session sometimes hangs,
so this timeout is useful to unblock such
problems

mv_repair_enabled false The default is 'true'.

This flag determines whether the
auto-repair framework needs to run
anti-entropy, a.k.a, repair on the MV

table.

initial_scheduler_delay 15m The minimum delay after a node starts
before the scheduler starts running repair

Nodetool
Here is what an example nodetool output would look like.

nodetool getautorepairconfig

All the YAML configuration mentioned above can be read through.
NAME

nodetool getautorepairconfig - Print autorepair configurations
SYNOPSIS

nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
[(-pp | --print-port)] [(-pw <password> | --password <password>)]
[(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]
[(-u <username> | --username <username>)] getautorepairconfig

OPTIONS
-h <host>, --host <host>

Node hostname or ip address
-p <port>, --port <port>

Remote jmx agent port number
-pp, --print-port

Operate in 4.0 mode with hosts disambiguated by port number
-pw <password>, --password <password>

Remote jmx agent password
-pwf <passwordFilePath>, --password-file <passwordFilePath>

Path to the JMX password file
-u <username>, --username <username>

Remote jmx agent username

Example

$> nodetool getautorepairconfig
repair scheduler configuration:

repair eligibility check interval: 5m
TTL for repair history for dead nodes: 2h
max retries for repair: 3
retry backoff: 60s

configuration for repair type: full
enabled: true
minimum repair interval: 1h
repair threads: 1
number of repair subranges: 16
priority hosts:
sstable count higher threshold: 10000
table max repair time in sec: 6h
ignore datacenters:
repair primary token-range: true
number of parallel repairs within group: 3
percentage of parallel repairs within group: 3
mv repair enabled: false
initial scheduler delay: 1m
repair setssion timeout: 3h

configuration for repair type: incremental
enabled: true
minimum repair interval: 15m
repair threads: 1
number of repair subranges: 16

https://docs.google.com/document/d/1CJWxjEi-mBABPMZ3VWJ9w5KavWfJETAGxfUpsViPcPo/edit?pli=1#heading=h.v67de7uy0x4z

priority hosts:
sstable count higher threshold: 10000
table max repair time in sec: 6h
ignore datacenters:
repair primary token-range: true
number of parallel repairs within group: 3
percentage of parallel repairs within group: 3
mv repair enabled: false
initial scheduler delay: 1m
repair setssion timeout: 3h

nodetool setautorepairconfig

All the YAML configuration mentioned above can be updated dynamically through nodetool
without any Cassandra restarts, and the scheduler will adjust! If an admin decides to tune or
stop the ongoing repair, it can be done quickly through the nodetool.

NAME
nodetool setautorepairconfig - sets the autorepair configuration

SYNOPSIS
nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]

[(-pp | --print-port)] [(-pw <password> | --password <password>)]
[(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]
[(-u <username> | --username <username>)] setautorepairconfig
[(-t <repair type> | --repair-type <repair type>)] [--]
<autorepairparam> <value>

OPTIONS
-h <host>, --host <host>

Node hostname or ip address
-p <port>, --port <port>

Remote jmx agent port number
-pp, --print-port

Operate in 4.0 mode with hosts disambiguated by port number
-pw <password>, --password <password>

Remote jmx agent password
-pwf <passwordFilePath>, --password-file <passwordFilePath>

Path to the JMX password file
-t <repair type>, --repair-type <repair type>

Repair type
-u <username>, --username <username>

Remote jmx agent username
--

This option can be used to separate command-line options from the
list of argument, (useful when arguments might be mistaken for
command-line options

<autorepairparam> <value>
autorepair param and value. Possible autorepair parameters are as
following: [start_scheduler

|number_of_repair_threads|number_of_subranges|min_repair_interval|sstable_upper_threshold|enabled|
table_max_repair_time|priority_hosts|forcerepair_hosts|ignore_dcs|history_clear_delete_hosts_buffe
r_interval|repair_primary_token_range_only|parallel_repair_count|parallel_repair_percentage|mv_rep
air_enabled|repair_max_retries|repair_retry_backoff|repair_session_timeout]

Example

$> nodetool setautorepairconfig -t incremental number_of_repair_threads 2
$> nodetool setautorepairconfig -t full mv_repair_enabled false

nodetool autorepairstatus

Inspired by the famous nodetool status, implemented a similar command to know the host
ids going through the repair cycle.

NAME
nodetool autorepairstatus - Print autorepair status

SYNOPSIS
nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]

[(-pp | --print-port)] [(-pw <password> | --password <password>)]
[(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]
[(-u <username> | --username <username>)] autorepairstatus
[(-t <repair type> | --repair-type <repair type>)]

OPTIONS
-h <host>, --host <host>

Node hostname or ip address
-p <port>, --port <port>

Remote jmx agent port number
-pp, --print-port

Operate in 4.0 mode with hosts disambiguated by port number
-pw <password>, --password <password>

Remote jmx agent password
-pwf <passwordFilePath>, --password-file <passwordFilePath>

Path to the JMX password file
-t <repair type>, --repair-type <repair type>

Repair type
-u <username>, --username <username>

Remote jmx agent username

Example

$> nodetool autorepairstatus -t incremental
Active Repairs
425cea55-09aa-46e0-8911-9f37a4424574

$> nodetool autorepairstatus -t full
Active Repairs
NONE

Observability
The idea here is to have all important stuff captured in metrics, such as time to run repair,
skipped/failed/successful ranges, repair is progressing, entire cluster’s repair time, etc., so
an operator can set up dashboards and alarms accordingly and be rest assured that the
automated repair scheduler is working as expected. The following metrics will be provided to
show the repair progress in the cluster.
Metric Name

org.apache.cassandra.metrics.AutoRepair.<MetricName>
JMX MBean

org.apache.cassandra.metrics:type=AutoRepair name=<MetricName> repairType=<RepairType>

Name Type Description

RepairsInProgress Gauge<Integer> Repair is in progress on the
node

NodeRepairTimeInSec Gauge<Integer> Time taken to repair the node
in seconds

ClusterRepairTimeInSec Gauge<Integer> Time taken to repair the
entire Cassandra cluster in
seconds

LongestUnrepairedSec Gauge<Integer> Time since the last repair
ran on the node in seconds

SucceededTokenRangesCount Gauge<Integer> Number of token ranges
successfully repaired on the
node

FailedTokenRangesCount Gauge<Integer> Number of token ranges failed
to repair on the node

SkippedTokenRangesCount Gauge<Integer> Number of token ranges
skipped on the node

SkippedTablesCount Gauge<Integer> Number of tables skipped on
the node

TotalMVTablesConsideredForRepair Gauge<Integer> Number of materialized views
considered on the node

TotalDisabledRepairTables Gauge<Integer> Number of tables on which the
automated repair has been
disabled on the node

RepairTurnMyTurn Counter Represents the node’s turn to
repair

RepairTurnMyTurnDueToPriority Counter Represents the node’s turn to
repair due to priority set in
the automated repair

RepairTurnMyTurnForceRepair Counter Represents the node’s turn to
repair due to force repair
set in the automated repair

Reliable Incremental Repair Onboarding/Offboarding
Incremental repair does not work reliably for all workload types. Therefore, it is essential to
have a smooth onboarding/offboarding process. The current Onboarding/offboarding[1]

incremental repair is quite painful. The challenge amplifies exponentially if we want to do this
on a large Cassandra cluster and an extensive fleet of Cassandra.
Following changes are made to make the incremental repair more reliable and scalable to
manage in a large-fleet.

Features

No Restart

By default when we want to onboard/offboard to incremental repair, then it requires
setting/resetting each and every SSTables followed by a rolling restart. Restarts delays the
issue of mitigation, especially for large Cassandra clusters. Hence a following nodetool
command is included that will not require restart, and it will not even ask for any
keyspace/tables.

NAME
nodetool sstablerepairedset - Set the repaired state of SSTables for
given keyspace/tables

SYNOPSIS
nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]

[(-pp | --print-port)] [(-pw <password> | --password <password>)]
[(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]
[(-u <username> | --username <username>)] sstablerepairedset
[--is-repaired] [--is-unrepaired] [--really-set] [--] <keyspace>
[<table...>]

OPTIONS
-h <host>, --host <host>

Node hostname or ip address
--is-repaired

Set SSTables to repaired state.
--is-unrepaired

Set SSTables to unrepaired state.
-p <port>, --port <port>

Remote jmx agent port number
-pp, --print-port

Operate in 4.0 mode with hosts disambiguated by port number
-pw <password>, --password <password>

Remote jmx agent password
-pwf <passwordFilePath>, --password-file <passwordFilePath>

Path to the JMX password file
--really-set

Really set the repaired state of SSTables. If not set, only print
SSTables that would be affected.

-u <username>, --username <username>
Remote jmx agent username

--
This option can be used to separate command-line options from the
list of argument (useful when arguments might be mistaken for
command-line options

[<keyspace> [<table...>]]
The keyspace optionally followed by one or more tables. If no keyspace is

given, then it will pick all non-LOCAL keyspaces.

https://stackoverflow.com/questions/42182984/how-do-i-enable-incremental-repair-on-cassandra-2-1-13

Safety Against 100% Disk Full

Incremental repair can lead to 100% disk full in corner-case scenarios. To alleviate the disk
usage, a new mechanism has been added in that if the disks are 80% full, then the current
and futuristic incremental repair will automatically stop!

A following new YAML configuration has been added, which controls the allowed headroom
for incremental repair to proceed. More details about this setting has been added under
YAML configuration section.

incremental_repair_disk_headroom_reject_ratio: 0.2

Protection Against Materialized View and CDC
It is not recommended (due to existing bugs) to use the incremental repair on a table if a
Materialized View and/or CDC is enabled. The scheduler additionally confirms whether the "write
path" is disabled (CASSANDRA-17666) during the streaming. If the "write path" is not disabled,
then it will skip incremental repair, else allow.

Next
We can see the above-mentioned features simplify the incremental repair, but it still requires
a limited operator involvement. The plan is even to automate that part, so an operator just
needs to configure a few settings, and that’s it! The design to make the incremental repair
onboarding/offboarding a fully automated experience has been discussed in this document.

Incremental Repair Migration

Scale
This design has been thoroughly tried and tested on an immense scale (hundreds of unique
Cassandra clusters, tens of thousands of Cassandra nodes, with tens of millions of QPS) on
top of 4.1 open-source. Please see more details here.

Source Code
The PR is currently on top of Apache Cassandra 4.1.6, and it includes everything described
above.
Pull request: https://github.com/apache/cassandra/pull/3367/

Appendix

Feedback: Automate Repair in Cassandra
This section covers the feedback received as part of this design discussions from various
folks, corresponding action items, and follow ups.

https://docs.google.com/document/d/10AJZ1uSVwRVy5elDk_SAOmWaEkz01Ruc2zXIYyqaprY/edit
https://issues.apache.org/jira/browse/CASSANDRA-12888
https://issues.apache.org/jira/browse/CASSANDRA-17666
https://www.uber.com/en-US/blog/how-uber-optimized-cassandra-operations-at-scale/
https://github.com/apache/cassandra/pull/3367/

Mar 28, 2024
● Feedback from Andy Tolbert: Auto Repair Notes/Feedback Mar 28 - Google Docs

Apr 25, 2024
Jaydeep:

● Added an interface for token-range calculation so one can override with their own
implementation. An example PR

Kristijonas:
● Added Option 4 for IR migration - nodetool command, which mutates SSTable

repaired state at runtime.
● Implemented repair type agnostic auto-repair scheduler and tested in staging (at

small scale), Option 1 for IR migration is now ready.
● Working on automating migration from repaired to unrepaired state:

○ Performed a survey of all use cases of the repairedAt field and identified
where repairedAt should be ignored during repaired -> unrepaired migration.

○ Still need to address some concerns about the impact on transient replication

May 9, 2024
Kristijonas:

● IR is still running at a small scale within our fleet. I’m hoping to start the large-scale
migration next week.

● Documented multiple options for the repaired -> unrepaired migration. Would like
advice on which option we should go with.

Jaydeep:
● Prepare a new PR with the v2 framework and share it before May’23

May 15, 2024
Here is the PR with the v2 framework on top of 4.1.3, which covers the following
functionality:
- AutoRepir v2 framework that covers both FR & IR schedulers
- An interface with a default implementation for TokenRange calculation
- Enable/Disable the repair flag as a new CQL Table property

With that, the only deliverable item pending is the FR <-> IR roll forward/rollback
automation, which we will follow up on shortly. cc:

June 05, 2024
Generate Pull Requests against the 4.1 branch (AI: Jaydeep)

● Here are the two PRs against the 4.1 branch
● 4.1.6 - https://github.com/apache/cassandra/pull/3367
● 4.1.3 - https://github.com/apache/cassandra/pull/3368

https://docs.google.com/document/d/1Z4XbIC7wcdfXSSKZocamlFElvXB-6jvEnJBuJDW-o40/edit
https://github.com/apache/cassandra/commit/4cf142f53a981977db4d26c1ed807e6417f67926
https://docs.google.com/document/d/10AJZ1uSVwRVy5elDk_SAOmWaEkz01Ruc2zXIYyqaprY/edit#heading=h.du6yp34ghr8f
https://docs.google.com/document/d/10AJZ1uSVwRVy5elDk_SAOmWaEkz01Ruc2zXIYyqaprY/edit#heading=h.ibzhm6rp8twb
https://github.com/apache/cassandra/pull/3306
https://github.com/apache/cassandra/pull/3367
https://github.com/apache/cassandra/pull/3368

Aug 29, 2024
● 4.1.6 PR has been updated with all the bug fixes and minor improvements
● The CEP-37 has also been updated with the latest design details and a link to

this doc

https://github.com/apache/cassandra/pull/3367
https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-37+%28DRAFT%29+Apache+Cassandra+Unified+Repair+Solution

