EJERCICIOS REPASO

5.

1 Un coche puede acelerar y pasar de 0 a 150 Km/h en 4.8 s. a) Calcular la aceleración que aplica y el espacio que recorre. b) Dibuja la gráfica s-t y v-t Y a-t.
a= 8.4 m/s ²
 La posición de un móvil viene dada por la ecuación , en la que todas las magnitudes vienen dadas en SI. Calcula: 1.
 Posición Inicial y Velocidad 3.
4. Determina su posición y velocidad al cabo de 20 min 5.
6. ¿Cuánto tiempo tarda en pasar 100 m? s ₀ =1 m;v=2 m/s;2401 m; 49.5 s.
 el movimiento de un cuerpo está descrita por la ecuación . en Unidades del SI
 Tipo de movimiento 3.
 Dónde está el móvil cuando se pone en marcha el cronómetro? 5.
6. ¿Cuál es el valor de la velocidad inicial y aceleración? 7.
8. ¿Cuándo pasará por un punto situado a 100 m del observador? 9.
10. ¿Cuál sería la ecuación de la velocidad?
$s_0=5$ m; v=8 m/s; a=4 ; 5.2 s;
4 Un coche lleva una velocidad de 120 Km/h y frena en 65 m.1.
 Calcular la desaceleración aplicada y tiempo que tardó. 3.
4. Dibuja la gráfica s-t y v-t. a= -0.026; t= 1269 s.
5 Un cuerpo lleva una ecuación de , en la que todas las magnitudes se expresan en unidades del SI 1.
2. Qué tipo de movimiento lleva? 3.
4. Arranca el móvil desde el reposo? Cuánto vale su aceleración?

6. En qué instante su velocidad es de 30 m/s?

7.

8. ¿Podrías escribir la ecuación de la posición?

 $V_0=6 \text{ m/s}; a=3;8s$

6.- Se lanza verticalmente hacia arriba un objeto y tarda 2.5 s en alcanzar la altura máxima. Calcular el espacio que recorre y velocidad con la que fue lanzado.

h= 31.25 m; 25 m/s

7.- Se deja caer un cuerpo desde una altura y llega al suelo con velocidad de 80 Km/h. Calcula la altura y el tiempo que tarda en caer.

-2.2 m/s; 24.7 m.

8.- Se deja caer un objeto desde una altura y tarda 3.5 s en tocar el suelo. Calcula la altura desde la que se lanzó y el tiempo transcurrido y velocidad con la que llega al suelo.