
Notes
13.04.2012

Classes will be on 13th of April (Friday)
Server: IRC freenode, #ubuntu-classroom (http://webchat.freenode.net)
Online judge with training tasks is available at http://onlinejudge.xn.pl
The survey link is http://www.surveymonkey.com/s/MQK9SKP
Informations : http://bdfhjk.blog.pl

Spanish version is available at https://docs.google.com/document/d/1sL_vqkmFefiAK8nSKEvNfUnfjrAAB7VF90ZkXF70A5o/edit

1. Binary search

Link: http://en.wikipedia.org/wiki/Binary_search_algorithm
Binary search is one of the simplest algorithm. It can help, when the task is to

find the first value lower than such chosen, in sorted array, using not more than log2l
operations of comparison, where l is the number of elements in the array. Practical
usage: databases, tricky adjusting fonts or dimensions, presenting data in specified data
period, searching in archives like a phone book, debugging - when you know that a bug
is at a particular point during the execution of the program, using this method with
placing a check point, you can figure where crash actually happens, finding numerical
solutions to an equation

http://webchat.freenode.net
http://onlinejudge.xn.pl
http://www.surveymonkey.com/s/MQK9SKP
http://bdfhjk.blog.pl
https://docs.google.com/document/d/1sL_vqkmFefiAK8nSKEvNfUnfjrAAB7VF90ZkXF70A5o/edit
http://en.wikipedia.org/wiki/Binary_search_algorithm

Algorithm:

/**
* lef is the highest known value for which check(i) = true
* rgt is the lowest known value for which check(i) = false
*/
int lef=-1, rgt=n;
while (lef+1<rgt) {
int mid=(lef+rgt)/2;
if (check(mid)) lef=mid; else rgt=mid;
}

//Thanks for Robin Lee for proposing this pseudo
code

Alternative:
int p := 0 //number of first element)
int k := n-1 //number of last element)
while(p<k) {

int sr = (p+k)/2;
if (try(sr) = success) p := sr;

else k := sr-1;
if (k-p = 1 && try(p+1) = success) p++; ///This fragment prevent the infinite loop

else k--; ///In the case of sr = p and try(sr) == fail
}

Training tasks: Binary Search

2. Hashing

Link: http://en.wikipedia.org/wiki/Hash_function
Hashing methods are used, when You need to compare two large portions of

data many times and don't want to compare they char after char, but you want to have a
magic function, which returns true if one fragment of data is equal to another fragment.
Practical usage: comparing files, images, finding phrase in text, securely storing
passwords, identification, addressing using names, errors checking (eg. in files)

Standard and practical way to use hashes:
Let h(s[i..j]) = (s[i] + s[i+1]*p^1 + s[i+2]*p^2 + ... + s[j]*p^(j-i)) mod q

where p (eg. 13) is a small prime number and q is a big prime number (eg. 10^9+33)
Preprocessing: h(i) = (h(i+1)*p + s[i]) mod q; h(n+1) = 0

http://en.wikipedia.org/wiki/Hash_function

Function: h(s[i..j]) = (h(i) - p^(j-i+1)*h(j+1)) mod q
Training tasks: Words, Compare Fragments

3. Introduction to artificial inteligence

Link: http://fann.sf.net/fann_en.pdf
At classes, I will present usage of simple artificial neural network. We don't want

to implement it yet, but to use a FANN library. ANN may be used in many kinds of
problems, especially where don't exist deterministic methods. Some examples:
detecting language of text, complex matching data to keywords, making a propositions
dependent of user preferences, adjusting computer’s opponent strategy in games,
finding relationships between the results and data,

Training tasks : Coming soon

Thanks for help in preparing classes: Tomasz Garbus (tasks), Piotr Jarosz
(tasks), Mateusz Wojtczak (correction), Kamil Magryta (task tester), Adam Trzaskowski
(task tester), Chi Cuil (Spanish version)

For extending this notes, please use comment system.
If You want to ask about something related with algorithms, feel free to start new
question ticket at https://launchpad.net/algorithms-headquarter

Author: Marek Bardoński

http://fann.sf.net/fann_en.pdf
https://launchpad.net/algorithms-headquarter

