
Tab 1

​

Homework 3 | Advanced SQL Queries
If updates are made to the assignment spec after its release, they are highlighted in red.

Objectives: To practice advanced SQL, using complex aggregates and/or subquerying, and gain
experience with simple decorrelation.

Due date: Wednesday, Monday Oct. 22 @ 11:59pm

Resources
●​ Flights Schema document
●​ A SQL style guide in case you are interested (FYI only)

Part 1: SQL Queries
Below are some notes to keep in mind for this part:

●​ For each question, write a single SQL query to answer that question.
●​ You should only use the parts of SQL we have covered in class

○​ With the exception that you may use any operators/functions from the
documentation of SQLite)

○​ NEW: You CAN use subqueries/WITH (and are encouraged to!)
●​ Return the output columns exactly as indicated. Do not change the output column

names, the output order, or return more/fewer columns.
●​ Do not assume that attributes that aren’t primary keys will be unique.
●​ Unless otherwise noted, include canceled flights in your output.
●​ If a query uses a GROUP BY clause, ensure that all attributes in your SELECT clause

are either grouping keys or aggregate values.
○​ Recall that SQLite will let you select non-grouping-and-non-aggregate attributes.

However, this is not standard SQL and other DBMSs would reject that query
●​ Although the provided dataset consists entirely of flights made in September 2024, your

queries should NOT assume this. We WILL test your queries on other datasets.

Please review the above instructions before starting the problem and also before
submitting your responses. The below problems are NOT in order of difficulty.

https://docs.google.com/document/d/1DpQTSgLlcr4OhWOLBtnHccyVnpB3h3JAoXBN9U4UZxU/edit?usp=sharing
http://www.sqlstyle.guide/
https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_corefunc.html

​

▶️ Submission Items: Put each query in a separate numbered .sql file, corresponding to the
question number (hw3-q1.sql, hw3-q2.sql, etc).

1.​ (Output relation cardinality: 22 rows)​
Find the 10 longest distinct distances flown. Then, for each such distance, find all offered
"carrier routes", i.e., distinct (carrier, origin, destination) triples, and report how many
times that carrier route was flown. Identify routes by airport codes, not city names. Sort
the output in order of distance (highest distance first), breaking ties by origin (A-to-Z),
then destination (A-to-Z), and then carrier name (A-to-Z).

Name the output columns carrier_name, origin, dest, distance_mi, and
num_flights.

2.​ (Output relation cardinality: 1743 rows)​
For each carrier, calculate the percentage of its non-canceled flights that arrived on time
or early (i.e., arrival delay <= 0). Sort the output in descending order of this percentage,
and break ties in ascending alphabetical order by airline name. Report percentages as
percentages, not decimals (e.g., report 75.2534... rather than 0.7525...). Do not round
the percentages.

Name the output columns carrier_name and on_time_pct. In case a carrier has no
flights, include a row for that carrier with percentage 0.0.

Hint: You can use CASE expressions to implement conditionals in SQL (kind of like
if-statements or the ternary operator in other languages). You can put a CASE
expression as the argument to an aggregate function.​

3.​ (Output relation cardinality: 70 rows)​
A "route" is an ordered pair of (origin airport code, destination airport code). (This is
different from a "carrier route" which includes the carrier.)​

Find the 20 distinct most flown routes as well as every route that was flown exactly once.
Show these results combined in one table, with columns origin, origin_city,
dest, dest_city, and num_flights. Sort the output by num_flights from lowest
to highest, and break ties by origin (A-to-Z), then dest (A-to-Z).​

Hint: to combine two relations with the same schema, check out the UNION keyword.
Note carefully the limitations of UNION with regards to its component queries and LIMIT
and ORDER BY. You may need to work around these limitations using additional
subqueries or using the WITH keyword.

4.​ (Output relation cardinality: 7 rows)The "competition factor" on a route is the number of

distinct carriers who fly that route. For each distinct competition factor, find how many

https://www.sqlite.org/lang_expr.html#the_case_expression
https://www.sqlite.org/lang_select.html#compound_select_statements

​

distinct routes have that competition factor. Sort the output by competition factor from
highest to lowest.

Name the output columns competition_factor and num_routes.

5.​ (Output relation cardinality: 6 rows)​
We consider a flight to be "timely" if it has an arrival delay of at most 15 minutes. The
daily timeliness percentage for a carrier is the percentage of its flights for that day that
are “timely”. Find the names of all carriers that flew at least one flight and have a daily
timeliness percentage of at least 70% on every day they flew a flight. Sort in alphabetical
order, and do not include duplicates. Cancelled flights can be included in the s​ `et of
flights for that day, but are considered NOT “timely”.

Name the output column carrier_name​

6.​ (Output relation cardinality: 252 rows)​
Starting at some origin airport, a "direct destination" is an airport reachable in a single
flight from the origin airport. The "connection factor" of an origin airport is how many
distinct direct destinations one can reach from that origin.

Find airport codes where all of their direct destinations have a strictly higher connection
factor. Sort in alphabetical order, and do not include duplicates.

Name the output column airport

7.​ (Output relation cardinality: 367 rows)

For each origin airport, find the flight(s) with the longest duration (in minutes). If multiple
flights from the same origin airport share the longest duration, include them all. Name
the output column origin, fid, and duration_mins, in that order. We provide a
sample solution using subqueries:

SELECT F1.origin, F1.fid, F1.duration_mins

FROM Flights F1

WHERE duration_mins = (

 SELECT MAX(duration_mins)

 FROM Flights AS F2

 WHERE F2.origin = F1.origin

);

However, notice that this query is correlated, and thus takes an extremely long time to
run in SQLite! You can verify this for yourself. Rewrite the solution into a more efficient
decorrelated query. Your solution should not take more than 3 minutes to run on attu.
For reference, our answer takes about 1 second.

​

Part 2: Reflection
This homework is relatively new, so the remaining questions help us to refine our specs for the
future.

○​ How many hours did it take you to finish this assignment?
○​ How many of those hours did you feel were valuable and/or contributed to your learning?
○​ Did you collaborate with others on this assignment? If so, please write how many

students you collaborated with, and their UW NetIDs.
○​ Is there anything you liked/disliked about this assignment? If not, please write N/A.

▶️ Submission Item: Please save your answers in a file called hw3-reflection.txt

Submission Instructions
What to turn in: hw3-reflection.txt, and hw3-q1.sql, …, hw3-q7.sql

Please ensure that
●​ If you have any “dot commands” in your query files (q1-q7), such as .headers on or

.mode columns, please remove these prior to submission
●​ You are submitting the .sql files directly to Gradescope, dragging the files to this screen

(no zip file needed):

●​ Your file names match the expected file names (see above). Double check you have

named all your files correctly!
○​ Do not submit your actual database (your .db file)

	Tab 1
	Homework 3 | Advanced SQL Queries
	Resources
	Part 1: SQL Queries
	Part 2: Reflection
	Submission Instructions

