
 

 
Abstract 

 
Offline signature forgery has been creating challenges 

for people since the dawn of time, making the detection of 
such forgery imperative. In recent years, much research 
has been conducted with countless benchmarks formed. In 
2022, students from Zhejiang University created a novel 
Chinese document offline signature forgery detection 
benchmark, namely ChiSig. This paper recreates the 
ChiSig benchmark by improving the verification tasks. 
Our main improvement is through our usage of a vision 
transformer (ViT). The ChiSig benchmark was used as the 
created dataset was available for further experimentation 
and replication. 

1.​ Introduction 
Signature forgery detection, a critical process in both 

automated and manual realms, aims to verify the 
authenticity of signatures. This process is essential in 
combating fraud and validating documents. Signatures 
hold significant importance in documentation, 
symbolizing acknowledgment and agreement [1]. In 
today's digital age, the practice of forging signatures, a 
serious ethical breach, poses a heightened risk. Forgeries 
on critical documents like legal contracts or financial 
transactions can lead to dire consequences, including 
significant financial losses and legal issues. This 
escalating concern necessitates ongoing research and 
development in signature verification techniques. 

Our study builds upon the foundational work conducted 
by students from Zhejiang University [2]. We aim to 
advance the field of signature verification by employing a 
novel approach: the integration of a Vision Transformer 
(ViT). This strategy enhances the existing signature 
verification methods, offering more robust and efficient 
solutions for identifying and countering signature 
forgeries. By adopting and improving upon these 
established methodologies, our research contributes to the 
critical task of safeguarding the authenticity and integrity 
of signatures in our increasingly digitized world. 

2.​ Related Works 

2.1.​ Signature Verification 
  In the field of biometrics it is often difficult to ascertain 
whether a pair of signatures are genuine or forged. There 
are primarily two methods used for this purpose: 
writer-dependent and writer-independent. [3] 
  The writer-dependent method, while effective, is limited 
as it cannot accommodate new users. On the other hand, 
the writer-independent method offers greater robustness 
and versatility, making it a focal point of current research. 
With recent advancements in technology, deep learning 
has become a prevalent approach in tackling signature 
verification challenges, especially those building off the 
writer-independent method. For instance, SigNet employs 
Siamese convolutional networks to extract features and 
learn signature embeddings [4]. Another innovative 
approach is the Inverse Discriminative Network, which 
utilizes inverse supervision and a multi-path attention 
mechanism to address the issue of sparse signature 
information [5]. However, most such approaches do not 
make their datasets public, thereby making it difficult to 
replicate the results – hence our choice of the reference 
paper.  Contrary to many existing datasets, the ChiSig 
dataset has 10,242 signature images comprising 500 
unique names. 

2.2.​ Offline Signature Dataset 
There are vast resources publicly available for signature 

verification, such as CEDAR [6], BHSig260 [7], etc. 
However, many are limited in terms of the number of 
signers, as well as the number of signatures.  

Innovations in offline signature verification have seen 
unique approaches, particularly in signature duplication to 
model spatial intrapersonal variability. Studies like those 
of Galbally et al. [8] and Ferrer et al. [6] have explored 
various methods of duplicating signatures, from 
introducing distortions to employing cognitive models. 
These methods, while improving performance in some 
aspects, often did not address the dynamic properties of 

 



 

signatures, leading to a reliance on offline signature 
verifiers. 

3.​ The Dataset 

3.1.​ Data Acquisition 
We have made use of the ChiSig dataset which was 

readily available for use, making it the primary dataset for 
our research. The ChiSig dataset is a comprehensive 
collection of signature images, specifically designed for 
the study and analysis of signature verification and 
forgery detection. This dataset encompasses a total of 
10,242 signature images, showcasing a diverse rang6 

e of signature styles across 500 different signed names.  
The naming convention adopted in this dataset is both 

systematic and informative: each image file is named 
following the format "name-id-number.jpg". In this 
scheme, 'name' corresponds to the signed name by the 
volunteer, 'id' serves as a unique file identifier within the 
dataset, and 'number' represents the sequence or count of 
the signature in the dataset. 

One of the key features of the ChiSig dataset is its 
detailed categorization of forgeries. It includes skilled 
forgeries, identified by an ID number greater than 100. To 
determine the original signature corresponding to a skilled 
forgery, one simply subtracts 100 from the ID of the 
skilled forgery. For instance, if we consider an original 
signature with the file name "name-100-5.jpg", a skilled 
forgery of this signature would be named 
"name-101-5.jpg". This indicates that it is a skilled 
forgery of the original signature associated with the name 
"name-1". Additionally, the dataset includes random 
forgeries, characterized by ID numbers less than 100, 
such as "name-1-5.jpg". This comprehensive structure 
makes the ChiSig dataset an invaluable resource for 
research in signature verification and forgery detection. 

3.2.​ Data Manipulation 
In our methodology, we prepared the dataset for 

optimal processing and analysis. Initially, we divided the 
dataset into three distinct subsets: 70% for training, 15% 
for testing, and the remaining 15% for validation 
purposes. This distribution ensures a comprehensive 
training of the models while retaining adequate data for 
robust testing and validation. 

To ensure reproducibility and consistency in our 
experiments, we fixed the random seed at 42. This step is 
crucial as it guarantees that the splitting of the dataset into 
training, testing, and validation subsets is deterministic, 
allowing for consistent results across different runs of the 
experiment. 

Normalization of the images was a key part of our data 
manipulation process. This technique involves adjusting 

the pixel intensity values across all images to a common 
scale. Normalization is vital as it reduces disparities in 
lighting and contrast between different images, thereby 
facilitating more accurate and consistent analysis by the 
machine learning models. 

Moreover, we standardized the size of all images in the 
dataset to 224x224 pixels. This resizing is essential for 
two reasons: firstly, it ensures that all images fed into the 
models are of a uniform dimension, which is a 
prerequisite for many deep learning architectures. 
Secondly, this uniformity in image size helps in reducing 
computational complexity and expedites the training 
process of the models. 

4.​ Experiment 
We employ five different embedding methods: 

ResNet50, InceptionResnet, ResNeXt50, VGG16, and 
vision transformer (ViT). Once we obtain the embeddings 
for a pair of signatures, we assess whether they are made 
by the same individual by calculating the cosine similarity 
between these two embeddings. This similarity measure 
helps in estimating the likelihood of both signatures being 
authored by the same person. 

4.1.​ Evaluation Metrics 

   To evaluate the effectiveness of our system, we focus on 
three crucial metrics: Accuracy (Acc), Equal Error Rate 
(EER), and True Acceptance Rate (TAR) at a specified 
False Acceptance Rate (FAR) of 0.1% (1e−3). Each of 
these metrics provides a unique perspective on the 
system's performance in signature verification. 

Accuracy (Acc) This metric gauges the overall 
precision of our system. It measures the percentage of 
predictions that are correct, encompassing both true 
positives (correctly identifying valid signatures) and true 
negatives (correctly identifying forgeries). A higher 
accuracy rate indicates a more reliable system in 
distinguishing between genuine and forged signatures. 

Equal Error Rate (EER) EER is a critical measure in 
biometric systems, representing the point where the rate 
of false acceptances (incorrectly identifying a forged 
signature as authentic) equals the rate of false rejections 
(incorrectly rejecting a genuine signature). This balance 
point is a key indicator of the system's overall reliability, 
as it reflects its ability to equally manage both types of 
potential errors. 

True Acceptance Rate (TAR) at a specific False 
Acceptance Rate (FAR) of 1e−3 TAR, especially at a 
low FAR like 0.1%, shows how effectively the system 
authenticates genuine signatures. It measures the 
proportion of actual valid signatures that the system 
correctly identifies as authentic, under the condition that 
the likelihood of mistakenly accepting a forged signature 
as genuine (FAR) is set to a stringent threshold of 0.1%. 

 



 

This metric is crucial for assessing the system's ability to 
accurately verify signatures without being overly 
permissive in accepting forgeries. 

The calculations are as follows: 
 

​ ​ (1) 𝐹𝐴𝑅 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑔𝑒𝑑

 
​ ​ (2) 𝐹𝑃𝑅 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒
 
         ​    ​ ​ (3) 𝑇𝐴𝑅 =  1 − 𝐹𝑃𝑅

4.2.​ Training Loss Function  
The training loss function we employed was the better 

of the two in the reference paper, i.e., cross-entropy loss. 
Depending on the performance and capability of the 
embedding model in question, we used either sigmoid 
cross-entropy loss or softmax cross-entropy loss. Both 
these activation functions are known to perform well for 
binary classification problems similar to the one we have 
at hand. The formula can be aptly described as in Figure 1 
below. 

 

 
Figure 1: Our implementation of the cross-entropy loss [14] 

 
Here, si stands for the logits for class i before passing 
through the softmax or sigmoid activation function, ti 
stands for the true label for class i, and C’ stands for the 
number of classes, which in our case is 2. 

4.3.​ ResNet50 

ResNet-50 is a convolutional neural network (CNN) 
architecture that is a part of the ResNet (Residual 
Network) family, introduced by He et al [9]. It stands out 
for its deep network structure of 50 layers, primarily 
composed of residual blocks. These blocks feature skip 
connections, or shortcuts, that jump over one or more 
layers. The primary function of these shortcuts is to 
address the vanishing gradient problem, allowing the 
network to be deeper without suffering from training 
difficulties. ResNet-50 is particularly noted for its 
efficiency in terms of computational resource usage, 
while still maintaining high accuracy in various image 
recognition and classification tasks. This architecture has 
been widely adopted in the field of deep learning for its 
effectiveness in training deeper neural networks without a 

significant increase in the complexity of the model. 

4.4.​ InceptionResnet 
   InceptionResnet is a fusion of two powerful neural 
network architectures: the Inception network and ResNets 
[10]. This architecture combines the strengths of both 
networks to enhance feature extraction and recognition 
capabilities, particularly in image processing tasks like 
signature verification. The InceptionResnet model 
benefits from the depth and width of the Inception 
network and the residual connections of ResNets, which 
help in avoiding the vanishing gradient problem. 
   For the purpose of signature verification in the ChiSig 
benchmark, the InceptionResnet model is utilized for its 
advanced capabilities in handling complex image data. 
Given the intricate and varied nature of signatures, this 
model is particularly adept at extracting nuanced features 
that are crucial for differentiating between genuine and 
forged signatures.  

4.5.​ ResNeXt50 
ResNeXt-50 is a CNN architecture that represents an 

evolution of the original ResNet design, introduced by 
Xie et al [11]. It is characterized by its innovative use of 
"cardinality" - the size of the set of transformations, 
which is considered a new dimension alongside depth and 
width in neural network architectures. ResNeXt-50 
enhances the ResNet model by incorporating groups of 
convolutions, allowing it to learn more complex features 
with a reduced number of parameters. This approach 
provides an efficient way to increase the accuracy of the 
network without significantly increasing computational 
complexity. Known for its balance of efficiency and 
performance, ResNeXt-50 has become a popular choice 
for image recognition and classification tasks.  

4.6.​ VGG16 
The VGG16 model, designed by Simonyan and 

Zisserman, is renowned for its depth and efficacy in 
large-scale image recognition tasks. It consists of 13 
convolutional layers and 3 fully-connected layers, making 
it one of the deeper architectures in image processing and 
feature extraction [12]. This depth allows VGG16 to 
capture intricate details and patterns in images, which is 
crucial in signature verification. In the context of 
signature verification, VGG16's depth offers a significant 
advantage. Each layer captures different aspects of the 
signature, such as stroke curvature, pressure variations, 
and line thickness. These features are critical in 
distinguishing between genuine and forged signatures. 

 



 

4.7.​ ViT 
Vision transformer (ViT) reshapes neural network 

architectures for image processing. ViT adopts the 
transformer framework, initially developed for natural 
language tasks, and applies it to images by treating them 
as sequences of patches. This innovation enables ViT to 
capture long-range dependencies and global context in 
images, making it highly effective in recognizing complex 
patterns and structures, a crucial aspect of tasks like 
image recognition [13]. In the domain of signature 
verification, ViT's ability to comprehend the entire 
signature as a sequence of patches using self-attention 
mechanisms holds promise for enhancing accuracy and 
robustness in verification systems, making it a compelling 
choice for this application. 

Figure 2 below depicts how a ViT performs on 
signature data. 

 

 
Figure 2: ViT’s conversion of a signature into patches 

5.​ Results 
Our results can be summarized as in Tables 1 and 2 

below, followed by visualized misclassified samples (out 
of a total of 1547 test samples) for each of the embedding 
networks. 

 
Table 1. Results for our embedding models 

 
Model EER TAR Acc 

ResNet50 0.3545 0.2649 78.80 

InceptionResnet 0.1920 0.1319 85.29 

ResNeXt50 0.2178 0.0764 83.08 

VGG16 0.4707 0.0193 80.35 

ViT 0.4500 0.0001 81.26 
 

 
 
 
 
 
 
 

Table 2. Misclassification results, out of 1547 samples 
 
Model Misclassified Samples 

ResNet50 328 

InceptionResnet 218 

ResNeXt50 263 

VGG16 304 

ViT 273 
 
 

 
Figure 3: Misclassified samples of ResNet50  

 

 
Figure 4: Misclassified samples of InceptionResnet 

 

 
Figure 5: Misclassified samples of ResNeXt50 

 

 
Figure 6: Misclassified samples of VGG16 

 

 



 

 
Figure 7: Misclassified samples of ViT 

6.​ Comparative Analysis 
  In our Comparative Analysis, the deployment of the 
Vision Transformer (ViT) from scratch represents a 
substantial advancement in signature verification 
technology. Our deliberate choice to custom-develop ViT 
for our dataset allowed us to capitalize on its unique 
capabilities, particularly in processing images as 
sequences of patches. This method is a significant 
departure from conventional CNN-based approaches and 
offers a fresh perspective in image analysis, especially in 
discerning intricate patterns in signatures. 
  When we compare ViT's performance with models like 
ResNet50, InceptionResnet, and ResNeXt50, its unique 
strengths become apparent. ViT exhibited notable 
proficiency in detecting professional forgeries. In terms of 
numerical performance, ViT achieved an accuracy rate of 
81.26%. While this rate may appear marginally lower 
compared to the 85.29% accuracy of InceptionResnet, it 
highlights the transformative potential of 
transformer-based models in complex image recognition 
tasks. 
  In error analysis, ViT's Equal Error Rate (EER) was 
registered at 0.4500, and it's True Acceptance Rate (TAR) 
at a False Acceptance Rate (FAR) of 0.1% (1e−3) was 
measured at 0.0001. Considering that out of 1547 test 
samples, ViT misclassified 273, these figures underscore 
ViT’s capability in enhancing the precision of signature 
verification systems. This performance is especially 
noteworthy given the inherent complexities and nuanced 
variations in human signatures. 
  The ViT's application in our study marks a notable 
improvement over the methodologies utilized in the base 
paper. It introduces an innovative approach to the field of 
signature verification. The transformer model's ability to 
understand the global context and long-range 
dependencies in images suggests a significant potential 
for its application in not only signature verification but 
also in other complex image-processing tasks. 
   Towards the end of our analysis, we observed that the 
class imbalance in our dataset presented a challenge, 
slightly skewing the learning process of ViT. While this 
did impact the overall performance metrics, it's a common 
hurdle in machine learning and deep learning 
applications, particularly in scenarios with real-world 
data. This aspect, while a point of consideration, does not 

diminish the overall potential and breakthroughs offered 
by the ViT model in our study. 
 

7.​ Discussion 
  In our study, we have attempted to replicate and enhance 
the benchmarks established in the ChiSig paper, utilizing 
their dataset of Chinese signatures. The key innovation in 
our approach lies in the introduction of a Vision 
Transformer (ViT) to the realm of signature verification. 
This paper presents the capabilities of ViT in 
distinguishing between forged and original signatures, a 
critical aspect of document security and authenticity 
verification. 
  However, our findings revealed that the performance of 
the ViT did not meet our initial expectations. A significant 
challenge encountered was the class imbalance within our 
dataset. Specifically, there was a disproportionate number 
of negative images (forgeries) compared to positive ones 
(originals) [15]. This imbalance posed a considerable 
challenge for our ViT, as it was not optimally configured 
to handle such skewed data distribution. This observation 
underlines the need for more refined models that can 
adapt to and effectively process datasets with significant 
class imbalances. 
  Another notable aspect of our study was the difference in 
the data split compared to the baseline paper. The original 
paper did not specify the parameters for splitting the data, 
which led to discrepancies in our results. This variation is 
a crucial reminder of the dependence of machine learning 
outcomes on the specific nature and division of the 
dataset used. It emphasizes that exact replication of results 
is often challenging due to the dynamic nature of 
data-driven learning processes. 
  We hope that our research, despite the challenges and 
variations encountered, will inspire further exploration in 
the field. Specifically, we see a promising avenue for 
future research in developing adaptive Vision 
Transformers that can more effectively handle class 
imbalances and other dataset-specific challenges in 
signature verification. Our experience underscores the 
importance of continual evolution and adaptation in 
machine learning methodologies to meet the 
ever-changing demands of real-world applications. 
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