PSP Replacement: Goals & Requirements

Objective

Replace PodSecurityPolicy without compromising the ability for Kubernetes to limit privilege
escalation out of the box. Specifically, create/update pod permission should not be equivalent to
root-on-node (or cluster).

Requirements

Requirements with consensus:
R1.Validating only (i.e. no changing pods to make them comply with policy)
R2.Safe to enable in new AND upgraded clusters
a. Dryrun policy changes and/or Audit-only mode
R3.Built-in in-tree controller
R4.Capable of supporting Windows in the future, if not in the initial release (xref C3)
a. Don’t automatically break windows pods (xref R2)
R5.Must be responsive to Pod API evolution across versions
R6.(fuzzy) Easy to use, don’t need to be a kubernetes/security/linux expert to meet the basic
objective

Contentious requirements:

C1.Exceptions or policy bindings by requesting user

C2.Extensible: should work with custom policy implementations without whole-sale
replacement

C3.Windows support in the initial release (xref R4)

C4.Support enforcement at the sub-namespace level. E.g. policy applies to some pods in
the namespace, and not others.

C5.Enabled by default

a. Enforcing anything more conservative than fully privileged by default

C6. (fuzzy) Powerful and flexible enough for common enterprise use-cases; A viable and
simpler alternative to external admission controllers

C7.Provide an easy migration path from PodSecurityPolicy

Nice to have:
N1.Enforcement on pod-controller resources (i.e. things embedding a PodTemplate)

Open Questions

Q1.Where do we draw the policy lines? E.g. are local DoS mitigations in-scope? HostPorts?
ReadinessProbes?



Q2.What to do about ephemeral containers?

Q3.How will runtimeclass policy be enforced or not? Should a single namespace be able to
have security policy enforced for multiple runtimeclasses (kata and standard pods in the
same namespace for instance)?



	PSP Replacement: Goals & Requirements 
	Objective 
	Requirements 
	Open Questions 

