
CSE 276A - Intro to Robotics - FA24
Homework 5 Report

Andrew Choi (A69033628), Nishanth Chidambaram (A69031827)
[Demo Video] [Github Repo]

-​ Final Submission Files

-​ ~/cse276a_ws/src/rb5_ros2/rb5_ros2_vision/launch/yolo_detection_node.py
-​ ~/cse276a_ws/src/rb5_ros2/rb5_control/src/hw3_slam.py*
-​ ~/cse276a_ws/src/rb5_ros2/rb5_control/src/hw3_ekf.py*
-​ ~/cse276a_ws/src/rb5_ros2/rb5_control/src/hw3_move.py*
-​ ~/cse276a_ws/src/rb5_ros2/rb5_control/src/hw5_square.py
-​ ~/cse276a_ws/src/rb5_ros2/rb5_control/src/mpi_twist_control_node.py
-​ *note) the files are named with ‘hw3’ but were all modified according to hw5

Objective
The objective of this assignment is to design and test a Roomba-like system for coverage within
a controlled 10ft × 10ft environment, including:

1.​ Setting up an environment with specified landmarks and virtual boundaries.
2.​ Implementing a localization system to ensure situational awareness.
3.​ Designing and executing behaviors for area coverage and virtual boundary avoidance.
4.​ Demonstrating system performance with trajectory visualization and video evidence.

1. Environment Setup

●​ Description of Environment:
○​ Our environment was set up at UCSD Franklin Antonio Hall building 4F. We

used a 3m x 3m space with a carpet floor. The main reason for changing the
environment from a hard floor to a carpeted floor was that the robot’s slide
movement wasn’t accurate on the hard floor due to less friction, and we figured
sliding would be more efficient and precise than rotating 90 degrees.

●​ Landmark Placement: Specify the positioning of two landmarks on each side, including
measurements from the walls.

○​ Since we adopted the natural landmark detection model for SLAM with YOLOv8,
we placed 'bottle', 'potted plant', 'suitcase', 'umbrella', 'teddy bear', ‘keyboard’,
'stop sign', and ‘bowl’ and around the square 3m x 3m area.

○​ The ground truth coordinates (in meters) of the objects were: Bottle: (2.5, 0.7) /
Potted Plant: (0.3, 0.0) / Suitcase: (2.0, 0.0) / Umbrella: (0.5, 3.3) / Teddy Bear:
(0.0, 2.5) / Keyboard: (-0.3, 0.0) / Stop Sign: (2.0, 3.0) / Bowl: (2.7, 2.0)

https://youtu.be/Qd-yW8YCU5o
https://github.com/cjychoi/cse276a-rb5-fa24/tree/solution

2. Localization System

●​ Description of how the localization system ensures situational awareness.
○​ Each time the robot moves, it detects the natural landmarks relative to the robot. It

then uses the robot’s position in the world frame to recalculate the landmarks’
positions in the world frame. Using these locations, the robot is then able to find
its position in the world frame, update the EKF, and improve the accuracy of the
landmarks’ locations the next time they are seen by the camera.

●​ Explanation of how virtual boundaries are implemented using localization.
○​ Once the robot has gone through the cycles of using SLAM to find the robot’s

position in the world frame and the natural landmarks’ positions in the world
frame, the largest square area surrounded by landmarks without enveloping an
object is calculated, which then becomes the robot’s new virtual boundary. The
robot moves to the new virtual area and only moves within that virtual space.

3. Behaviors for Coverage and Avoidance

Explanation of the behaviors designed for:

●​ Area coverage.
○​ We are finding a square area that avoids all obstacles and boundaries, and we are

finding the coverage path for that area. We have a known size of the robot, so we
are sweeping, traveling forward or backward, from one side of the square to the
opposite side of the square. We are also traversing vertically up the area by
moving the width of the robot up between each sweep.

●​ Avoiding virtual boundaries or obstacles.
○​ We are using SLAM to detect the natural landmarks that mark the boundary and

obstacles. Once the objects are detected, we are doing the coverage sweep to
traverse across the entire mapped area and stay within the landmarks. We
implemented a logic (hw5_square.py) where it calculates the largest square that
can fit within these landmarks and ensures systematic coverage of the area.

○​ The space around the centroid is divided into four quadrants based on angles
(45°, 135°, 225°, and 315°). From each quadrant, the object closest to the center
point is selected as the defining boundary point. The boundaries are adjusted by a
margin (0.2m) to account for robot safety and ensure the square stays within the
boundaries.

4. Implementation

●​ Description of the system implementation using ROS or Python.
●​ Architecture of the system, motivate your design choice(s)
●​ Brief description of your modules

System Implementation
The program is implemented in Python and ROS 2, combining SLAM, object detection, and
trajectory planning. The system uses Extended Kalman Filter (EKF) SLAM for landmark
mapping, YOLO-based object detection for real-time feedback, and waypoint navigation for
trajectory execution. The architecture leverages modular nodes for flexibility and efficiency in
task handling.

1.​ Landmark Detection and Mapping (SLAM):
●​ Design Choice: EKF SLAM is selected for its robustness in managing uncertainty

in noisy sensor data and dynamic robot movements.
●​ Components:

○​ hw3_ekf.py: Performs EKF SLAM, estimating distances and object
coordinates.

○​ hw3_slam.py: Handles robot movements (forward/rotate) and visualizes
both the landmarks and robot trajectory.

2.​ Object Detection:
●​ Design Choice: YOLO is used for its real-time object detection capabilities,

enabling precise identification of landmarks and obstacles.
●​ Components:

○​ Camera Node: Streams live video feedback to facilitate object detection
and coordinate calculations.

○​ yolo_detection_node.py: Processes camera data, detects objects and maps
their locations in the SLAM environment.

3.​ Robot Motion Control:
●​ Design Choice: Modular trajectory execution (square and octagon patterns) is

employed for systematic exploration and mapping.
●​ Components:

○​ hw3_move.py: Executes predefined trajectories for SLAM exploration.
○​ mpi_twist_control_node.py: Controls the robot’s movement and speed

using feedback from mpi_control.py.
4.​ Coverage Planning and Path Execution:

●​ Design Choice: The hw5_square.py module calculates the largest navigable area
and implements a back-and-forth sweeping path for efficient coverage.

●​ Components:
○​ hw5_square.py: Determines the largest square navigable within detected

landmarks and plans a systematic sweeping path for full area coverage.

Modules Description

1.​ EKF(Extended Kalman Filter):
●​ Performs EKF SLAM to estimate the robot’s pose and object positions.
●​ Tracks landmark coordinates and updates their locations based on sensor

feedback.
2.​ SLAM:

●​ Provides forward/rotate movements and plots both detected landmarks and the
robot’s path.

●​ Integrates with hw3_ekf.py for real-time mapping.
3.​ MOVEMENT:

●​ Defines movements for square and octagon trajectories to facilitate SLAM-based
exploration.

●​ MPI_TWIST_CONTROL: A sub-module that provides speed control and basic
movements.

4.​ CAMERA:
●​ Launches the camera for real-time feedback, which is processed by the YOLO

detection node.

5.​ OBJECT_DETECTION:
●​ Uses YOLOv8 to detect objects and their positions relative to the robot.
●​ Relays detection results to SLAM for mapping.

Design Motivation

●​ The modular structure allows independent handling of SLAM, detection, and movement,
ensuring scalability and fault isolation.

●​ Quadrant-based square fitting ensures efficient coverage planning within detected
boundaries.

●​ Real-time feedback from YOLO and SLAM ensures precise and dynamic adjustments
during operation.

5. Control Flow Diagram

●​ Diagram illustrating the control flow of the system.

6. Performance Evaluation

Demonstration of system performance:

●​ Description of the trajectories generated by the system.
○​ After the SLAM mapping, the robot knows its position in the world frame, and

the landmarks’ positions in the world frame, and has calculated the location and
size of the space it needs to do the coverage for. It calculates the trajectory to go
from the robot’s current position to the start position for the sweeping and then
calculates the trajectories the robot must take in order to cover all of the space
calculated as the largest square within the landmarks by finding the size of the
sides of the square, the finding the trajectories to travel along the x-axis along the
width of the square, slide upwards for the size of the robot, traverse back along
the x-axis, then slide upwards again. This is repeated however many times
necessary to cover the entire area, and if there is room for another sweep, the
trajectory is calculated to find the last sweep.

●​ Graphical illustration of the trajectories.

SLAM Map After Square/Octagon Trajectory

7. Extra Credit (Optional)

7.1 Performance Guarantees

If implemented, provide a description or derivation of performance guarantees for coverage.

●​ We have implemented a performance guarantee system for coverage by taking the
calculated square found using SLAM and finding the largest square found inside of the
landmarks. Inside the square, the robot finds the path that covers the entire area of the
square based on the robot’s size and begins to traverse. The trajectories are calculated so
that every sweep of the robot (movement along the x-axis from one end to the opposite)
will align with the previous sweep. This was done to maximize coverage but minimize
movement. We split the square into a number of segments. If the robot’s sweeping path
travels through a segment, it marks the segment as covered, and at the end posts the final
ratio of covered segments against the total number of segments. That ratio is converted to
a percentage, which is the percentage guarantee of the total coverage of the mapped area,
and added to the title of the chart containing the square and sweeping path.

7.2 SLAM System for Mapping

Description of the custom SLAM system used to map the environment on the fly.

●​ We incorporated our own solution of the SLAM system using an Extended Kalman Filter
(EKF) that was used for Homework 3. So we don’t provide the locations of the obstacles
or the boundaries, and the robot will navigate through the 10 ft x 10 ft environment in
square & octagon paths to detect the surrounding natural landmarks without knowing its
starting position. The robot considers its starting point (0,0) in the world frame, and every
detected object is compared to the relative position of the robot compared to its starting
position, which finds both the robot’s position and the landmark’s position in the world
frame. At the end of the SLAM calculations, the robot has accurately found the position
of all objects and itself in the world frame.

●​ The ground truth coordinates of the objects were:
○​ Bottle: (2.5, 0.7)
○​ Potted Plant: (0.3, 0.0)
○​ Suitcase: (2.0, 0.0)
○​ Umbrella: (0.5, 3.3)
○​ Teddy Bear: (0.0, 2.5)
○​ Keyboard: (-0.3, 0.0)
○​ Stop Sign: (2.0, 3.0)
○​ Bowl: (2.7, 2.0)

●​ The calculated coordinates by SLAM were:

detected_objects = [​
​ (2.640951728820801, 0.7626204788684845, 'bottle'), ​
 (0.3525556892156601, 0.06681589782238007, 'potted plant'),​
 (1.8769765138626099, -0.0272804319858551, 'suitcase'), ​
 (0.4195142149925232, 3.2073102951049805, 'umbrella'), ​
 (-0.332245796918869, 2.481550693511963, 'teddy bear'), ​
 (-0.312736182736811, 0.223912658127292, 'keyboard'), ​
 (2.0687340974807739, 3.1123993396759033, 'stop sign'), ​
 (2.8089545249938965, 2.1990201473236084, 'bowl')​
]

