
CS 60 - HW9

Homework 9: Abstract Data Types & RPN Calculator

​ In this homework, you will create an abstract data type for a generic stack. You will then

use this stack to build an RPN calculator. Now that you have experience with Java, you’ll

create these files yourself without starter files. However, feel free to refer to previous

homework for examples. Continue to follow good practices of testing and commenting.

Problem 1: Implementing a Stack

The goal of this problem is to create a generic stack class Stack and associated tests

StackTest. Java has a built-in Stack class in java.util.stack, but in this problem you will be

creating your own class instead. Remember that a stack is a first-in, first-out queue.

Only the element on the top of the stack can be directly accessed. Your stack class should

be defined as:

class Stack<E extends Comparable<E>>

Stack is an abstract data type, meaning that the internal representation of the stack

should be invisible to the user. For this homework, you will use your List class from

Homework 6 as a private instance variable within the Stack class to represent the

elements of the stack. Copy your List.java file from Homework 6 into your Homework 9

project. If you didn’t get List working in Homework 6, you will need to complete it now.

Because the class is abstract and the internal representation is private, it should be

possible to replace the List with another representation such as ArrayList without

causing any changes visible to a user of the Stack class.

Your stack should be generic, supporting any object E that extends Comparable. For

example, E could be String, Integer, etc. Your stack should support the following public

methods, with the maximum time complexity specified below. N indicates the size of the

stack.

Method Complexity Summary

Stack() O(1) Construct empty stack

int getSize() O(N) or O(1) Number of elements

boolean isEmpty() O(1) Is stack empty?

E peek() throws EmptyStackException O(1) Return top element without

removing it

E pop() throws EmptyStackException O(1) Remove and return top

element

Method Complexity Summary

void push(E e) O(1) Push e onto top of stack

void clear() O(1) Remove all elements in

constant time

boolean equals(Stack<E> s) O(N) Compare two stacks

String toString() O(N) Convert elements of stack to

space-delimited string

Note that peek and pop throw an EmptyStackException if the stack is empty. You will

need the following import to define this exception:

import java.util.EmptyStackException;

Problem 2: RPN Calculator

The goal of this problem is to create a four-function RPN integer calculator that can

accept math statements from the command line or a file and print the result. The

calculator should use your Stack<Integer> class to hold operands and results as they are

pushed on the stack. All operands must be Integers, and division truncates the result.

○​ In Reverse Polish Notation (RPN) expressions, operators always follow their

operands (like Racket in reverse!):

■​ 3 - 1 becomes 3 1 -

■​ 3 * (4 + 5) - 6 becomes 3 4 5 + * 6 -

■​ How would you evaluate the following Reverse Polish Notation expression

by hand? (The answer should be 3.): 8 23 + 4 - 9 /

○​ Note that since each operator always has exactly two operands, Reverse Polish

Notation does not require parentheses to enforce order of operations!

Write a StackCalculator class implementing the following methods, and associated

StackClaculatorTest.

Method Complexity Summary

StackCalculator() O(1) Constructor

int evalRPN(String[] instructions) O(N) Perform calculation

int calculateStream(InputStream

stream)

 Read a line from the input

stream, break it into tokens,

https://en.wikipedia.org/wiki/Reverse_Polish_notation

Method Complexity Summary

and evalRPN the tokens

int cacluateUser() calculate from System.in

int calculateFile(String filename) calculate from specified file

evalRPN() takes an array of strings called the instructions representing numbers or the

four operations +, -, *, /. It does not need to accept malformed instructions, such as

undefined operators or division by 0. It evaluates the instructions by pushing numbers

onto the stack. When it finds an operation, it pops the top two numbers off the stack,

performs the operation on those numbers, and pushes the result back on the stack. The

final result is the value on the top of the stack after executing all of the instructions. For

example, if instructions are [“3” “4” “5” “+” “*” 6 “-”], evalRPN’s stack looks like:

Instruction Stack Notes

3 3 Push 3 on stack

4 4 3 Push 4 on stack

5 5 4 3 Push 5 on stack

+ 9 3 Pop 5 and 4, add, push sum of 9

* 27 Pop 9 and 3, multiply, push product of 27

6 6 27 Push 6 on stack

- 21 Pop 6 and 27, subtract 27-6, push result of 21

Note that Integer.parseInt(s) converts a string s to an integer.

You will likely find the following code useful for reading from the keyboard and a file:

 import java.nio.file.Files;
 import java.nio.file.Path;

 ​ import java.io.InputStream;
 import java.util.Scanner;

 public int calculateStream(InputStream stream) {
 try (Scanner scan = new Scanner(stream)) {
 String in = scan.nextLine();
 String[] instructions = in.split(" ");
 int result = evalRPN(instructions);

 System.out.println(result);
 return result;
 }
 }

 public int calculateUser() {
 return calculateStream(System.in);
 }

 public int calculateFile(String filename) {
 Path p = Path.of(filename).toAbsolutePath();
 try (InputStream is = Files.newInputStream(p)) {
 return calculateStream(is);
 } catch (Exception e) {
 System.out.println(e);
 return 0;
 }
 }

 public static void main(String[] args) {
 StackCalculator calc = new StackCalculator();
 calc.calculateUser();
 calc.calculateFile("hw9/eqn.txt");
 }

calculateStream takes a Java InputStream, such as what you are typing at the keyboard

(System.in), or what you read from a file. InputStreams only read one character at a

time, so calculateStream then creates a Scanner object to read an entire line. The string

.split(" ") method splits the line into an array of strings based on spaces. For example,

“dog cat mouse froggy”.split(" ") would produce an array ("dog",
"cat", "mouse", "froggy").

calculateUser() invokes calculateStream with System.in, the default input stream.

calculateFile() invokes calculateStream with a file. It first converts the filename to an

absolute path (for example, hw9/eqn2.txt converts to

/Users/harris/Documents/Classes/CS60/Assignments/hw9/hw9/eqn.txt). When

running Java in VSCode, the base path defaults to the directory containing your project

(e.g. /Users/harris/Documents/Classes/CS60/Assignments/hw9), so if your project is

also called hw9 and a file named eqn.txt is in the top level directory of your project, you

would want the absolute path given above. calculateFile then opens a newInputStream

for that file using the Files class. Observe the try-with-resources pattern, which

automatically closes the InputStream after the try block. If there is a problem such as a

FileNotFoundException, the catch block prints the error message.

The main() tests a user input and a file input. When you run StackCalculator (click the

triangle icon in the upper right), the terminal window will wait for you to type a line,

then performs the calculation you entered. For example, if you type 40 2 +, it should

calculate 42. Next, main() reads another calculation from a file. If eqn.txt is in the top

level of your VSCode project and contains 6 9 *, the terminal will print 54.

What to Turn In

Turn in your Stack.java, StackTest.java, StackCalculator.java, and StackCalculatorTest.java

files in Gradescope. Each should pass the autograder, conform to the CS60 style guidelines,

and be written in a way to meet the time complexity specifications.

The autograder also expects the classes to be public. The autograder will NOT run if the

Stack and Stack Calculator classes are not public (i.e. public class StackCalculator,

public class Stack). So make those changes before submitting ONLY for the autograder!

Some other common reasons the autograder might fail:

●​ The package name is incorrect (not com.gradescope.hw9)

●​ Importing an unnecessary package that the autograder does not have (e.g. import

com.gradescope.hw6.List).

●​ The .java file name does not exactly match the class name (e.g. “Stack

Calculator.java” with a space in the name).

●​ Using == rather than .equals() to compare objects.

●​ The autograder uses a reference implementation of List.java from HW6, so it may fail if

your List implementation does not conform to that spec.

Rubric

Name Autograder Style Total

1 Stack 25 5 30

2 StackTest 8 2 10

3 StackCalculator 25 5 30

4 StackCalculatorTest 8 2 10

 82.5% 17.5% 80

	Problem 1: Implementing a Stack
	Problem 2: RPN Calculator
	What to Turn In
	Turn in your Stack.java, StackTest.java, StackCalculator.java, and StackCalculatorTest.java files in Gradescope. Each should pass the autograder, conform to the CS60 style guidelines, and be written in a way to meet the time complexity specifications.
	The autograder also expects the classes to be public. The autograder will NOT run if the Stack and Stack Calculator classes are not public (i.e. public class StackCalculator, public class Stack). So make those changes before submitting ONLY for the autograder!

	Rubric

