
Fixing fundamental issues in LLVM IR: Introducing a byte
type to solve load type punning

Student: George Mitenkov (georgemitenk0v@gmail.com)
Mentors: Nuno Lopes and Juneyoung Lee

Introduction

LLVM ecosystem provides a broad range of compiler optimisations, ranging from loops to
memory. While the optimisations are covered by the FileCheck test suite, are well-defined
semantically, and are peer-reviewed by several LLVM developers, miscompilations due to
unsound transformations still occur. Alive2 [1], designed to verify the transformations, has
recently made it easier to track bugs in LLVM, and to identify the sources of these
miscompilations.

One of such sources are memory optimisations. The challenge for the compilers stems from the
fact that languages like C/C++ or Rust allow programmers to have a rather low-level control of
memory. This makes high-level memory optimisations hard to implement, since aliasing and
memory model guarantees need to be taken into account. Recently, a new memory model for
LLVM IR has been proposed in order to make memory optimisations both sound and efficient,
while not blocking other integer optimisations [2]. However, there are still semantic
inconsistencies in compiler-introduced load type punning.

The problem

It is common for compilers, and LLVM in particular, to transform calls to memcpy or memmove to
a number of integer loads and stores of the corresponding bit width. After, load and store
instructions can be optimised further. However, there are certain problems with this type
punning approach.

call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %src, i32 8, i1
false)
​ =>
%src64 = bitcast i8* %src to i64*
%dst64 = bitcast i8* %dst to i64*
%tmp = load i64, i64* %src64, align 1
store i64 %tmp, i64* %dst64, align 1

Example 1 (InstCombine)
Source: https://llvm.godbolt.org/z/1G735z1ax

mailto:georgemitenk0v@gmail.com
https://github.com/AliveToolkit/alive2
https://web.ist.utl.pt/nuno.lopes/pubs/llvmmem-oopsla18.pdf
https://llvm.godbolt.org/z/1G735z1ax

Firstly, semantics of memcpy [3] and memmove [4] specify that the memory is copied as-is in
bytes, including the padding bits if necessary. On the other hand, in LLVM IR padding is always
poison, and loading poison bits makes the whole loaded value to be poison as well [5]. If the call
to memcpy or memmove is substituted with an integer load/store pair, then it is possible that the
copied value turns into poison after the transformation (see example in
https://alive2.llvm.org/ce/z/xoCTpH). This problem also affects other C++ functions that may be
lowered to calls to memcpy or memmove and subsequently to integer load/store pairs, such as
uninitialised_copy [6] (see example in https://llvm.godbolt.org/z/nGr6K4cnP). Several
violations in semantic differences due to this transformation have been reported by Alive2: (1),
(2), (3) and (4) as of April 1st.

The second problem comes from the fact that unsigned char* [8], used in memcpy and
memmove definitions, can alias with any pointer. Hence, substituting a call to memcpy of a
pointer with an integer load/store pair may fool the compiler not to see the escape of the pointer,
thus breaking the alias analysis and the soundness of further optimisations. Consider the
example below:

%src8 = bitcast i8** %src to i8*
%dst8 = bitcast i8** %dst to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst8, i8* %src8,
 i32 8, i1 false)
%load = load i8*, i8** %dst
%addr = ptrtoint i8* %load to i64
ret i64 %addr
​ =>
%src64 = bitcast i8** %src to i64*
%dst64 = bitcast i8** %dst to i64*
%addr = load i64, i64* %src64, align 1
store i64 %addr, i64* %dst64, align 1
ret i64 %addr
Example 2 (InstCombine)
Source: https://godbolt.org/z/jq9G9GMn3

In the source program, the ptrtoint instruction immediately specifies that the pointer %load
escapes via an integer. In the target program, the ptrtoint instruction is removed, and it may
happen that a value at *%dst may be changed without the compiler noticing it (via casting
%addr to a pointer and storing to it).

The underlying problem is the fact that LLVM IR lowers unsigned char or similarly the
recently introduced std::byte [9] to i8. While both C and C++ define these types as handles
to the raw bytes of objects, LLVM IR does not have a similar type. This means that
compiler-introduced type punning can break the alias analysis and miss the escaped pointer, as
was reported in the bug report 37469. To briefly describe the issue, consider the following

http://www.cplusplus.com/reference/cstring/memcpy/
http://www.cplusplus.com/reference/cstring/memmove/
https://www.cs.utah.edu/~regehr/papers/undef-pldi17.pdf
https://alive2.llvm.org/ce/z/xoCTpH
https://en.cppreference.com/w/cpp/memory/uninitialized_copy
https://llvm.godbolt.org/z/nGr6K4cnP
https://web.ist.utl.pt/nuno.lopes/alive2/index.php?hash=527cbc37afd08c52&test=Transforms%2FInstCombine%2Fbswap-inseltpoison.ll
https://web.ist.utl.pt/nuno.lopes/alive2/index.php?hash=527cbc37afd08c52&test=Transforms%2FInstCombine%2Fbswap.ll
https://web.ist.utl.pt/nuno.lopes/alive2/index.php?hash=527cbc37afd08c52&test=Transforms%2FInstCombine%2Fmemcpy-to-load.ll
https://web.ist.utl.pt/nuno.lopes/alive2/index.php?hash=527cbc37afd08c52&test=Transforms%2FInstCombine%2Fstruct-assign-tbaa-new.ll
https://en.cppreference.com/w/cpp/language/types
https://godbolt.org/z/jq9G9GMn3
https://en.cppreference.com/w/cpp/types/byte
https://bugs.llvm.org/show_bug.cgi?id=37469

transformations, where a1, a2, a3 are unsigned char arrays of length 8 and p, q, r are
integer pointers:

memcpy(a1, &p, 8); memcpy(a1, &p, 8);
memcpy(a2, &q, 8); memcpy(a2, &q, 8);
// Elementwise comparison and assignment ​ ​ ​
if ((int)a1 == (int)a2)
 a3 = a1;
else => a3 = a2​ ​ =>
 a3 = a2;​​ ​ ​ ​ ​ ​ ​ ​ ​ *p = 2;
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ *q = 3;
memcpy(&r, a3, 8); memcpy(&r, a3 8);
*p = 2; *p = 2;
*r = 3; *r = 3;
Original program​ ​ ​ ​ (InstCombine 1) ​ (InstCombine 2)
Example 3

The if statement in the original program is simplified to a3 = a2 using equivalence of y and (x
== y) ? x : y. After transforming the calls to memcpy to load/store pairs, the store to r is
incorrectly propagated from the memcpy of q, due to implicit pointer-to-integer and
integer-to-pointer casts, described in Example 2.

Solution

We propose to introduce a new byte type to LLVM IR to fix miscompilation issues described in
the previous section and make the semantics of type punning in LLVM consistent. The byte type
would have different sizes corresponding to different bit widths (e.g. b64 for 8-byte value and b8
for a single byte value). We further propose to make the lowering of char, unsigned char,
and std​::​byte in Clang to emit the new byte type. On the SelectionDAG side, we initially plan
to lower the new byte type to integer. However, a further discussion is needed to assess the
need of a byte type in SelectionDAG as well.

The byte type would have the following properties:

1.​ The byte type would be a first-class type in LLVM IR, and treated as a union of all the
other first-class types (like std::variant).

2.​ The byte type would:
a.​ be allowed as a load or store value
b.​ support cast operations: existing bitcast, and a new cast instructions, with the

following specification
i.​ bitcast of a byte type to the first-class type (returns poison on type

punning or if any bit is poison)
ii.​ bitcast of the first-class type to a byte type
iii.​ cast of the byte type to the first-class type such that:

1.​ if the source type is a pointer, and the target type is an integer,
then the cast acts like ptrtoint and returns poison on type
punning

2.​ if the source type is an integer, and the target type is a pointer,
then the cast acts like inttoptr and returns poison on type
punning

3.​ otherwise, bitcast is performed
c.​ not support any kind of arithmetic operations
d.​ track pointer provenance (if underlying value is a pointer)

The motivation for the generic cast instruction comes from the fact that when Clang converts
the byte to an integer (like in if statement in Example 3), the underlying value of the byte may be
unknown. Hence, it is impossible to deduce whether to insert ptrtoint or bitcast
instructions.

A more detailed overview of the required changes and the milestones of the project are
described below.

Benefits

The introduction of the new byte type has a number of benefits. We identify the following:

1.​ The lowering of loads of char, unsigned char, and std​::​byte would be fixed by
emitting the new byte type instead of i8. This would open a way for fixing incorrect
optimisations due to load type punning, and would be more in line with the “raw-memory
access” semantics of these types.

2.​ The calls to memcpy and memmove would be correctly transformed into the loads and

stores of the new byte type no matter what underlying type is being copied. Firstly, this
solves the problem of copying the padded data, with no contamination of the loaded
value due to poison bits of the padding. Also, when copying pointers implicit
pointer-to-integer casts that may undermine the alias analysis would be eliminated.

3.​ The provenance changes due to inttoptr casts would be avoided. Before, two loads

from i8** would be transformed into i64 load and an inttoptr instruction, as shown
in Example 4.1. The resulting provenance of %v2 after the transformations would be full.

%v1 = load i8*, %p
%v2 = load i8*, %p
​ =>
%v1 = load i64, %p ; casts are dropped for brevity
%v2 = inttoptr %v1 ; too strict: %v2 has full provenance

Example 4.1 (InstCombine)

With the new byte type, the cast from byte to pointer would preserve the provenance
since unlike integer the byte type carries one.

%v1 = load i8*, %p
%v2 = load i8*, %p
​ =>
%v1 = load b64, %p ; casts are dropped for brevity
%v2 = cast b64 %v1 ; provenance of %v2 is preserved

Example 4.2

The project

The project involves changes that involve several stakeholders, as many parts of the compiler
have to be touched: frontend, optimisation passes, and the backend (SelectionDAG and
GlobalISel). In this section, we present a brief description of the necessary steps of the project,
as well as describe some examples of how the new byte type would fit into the LLVM IR
ecosystem.

Introducing the byte type

As described in the previous section, the byte type would only support memory
operations and certain casts. We therefore would need to change memory instructions to
accept the new type (including load, store, memcpy and memmove).

Regarding the implementation, the byte type ByteType would inherit properties of
llvm::Type class, similarly to other types within the LLVM IR.

While this overview gives an understanding of how the byte type solves the load type
punning, the exact semantics of it and the operations it supports are yet to be discussed
with the community. We plan to collaborate with the various stakeholders in order to
choose the best possible design.

Changing the Clang frontend

Since there are numerous frontends that output LLVM IR, we choose to focus on Clang
only, while making other frontend developers aware of the changes. This helps to avoid
the difficulty of leveraging the changes in various frontends ourselves, and to focus on
the soundness of transformations instead.

As previously discussed, we plan to change the lowering of loads of char, unsigned
char, and std​::​byte. While the first two types are rather trivial to handle, the case of
std​::​byte may need extra handling as it is defined as enum class [10], and may
exhibit some other properties. This is currently being discussed with the Clang
community.

​

Changing the lowering to SelectionDAG

SelectionDAG and the backend infrastructure need to support the byte type lowering as
well. Currently, we propose to lower the byte type to an integer on the SelectionDAG
level. We believe that a wider discussion within the community may be useful to
establish alternative lowerings, such as whether the byte type is needed in
SelectionDAG as well.

Fixing the unsound optimisations due to load type punning

The unsound optimisation passes would be fixed with the introduction of the new byte
type. The first optimisation we would focus on is the transformation of memcpy and
memmove into the loads and stores of the new byte type. This involves changing the
instcombine pass. Also, we may need to change gvn pass to propagate byte’s
equality. We also take into account the fact that there may be other optimisations that
could be blocked. Hence, we save some time to address these as well.

Introducing new optimizations to remove unnecessary instructions

Moreover, several new optimisations would need to be added to reduce the number of
instructions. For example, redundant casts from bytes to integers may be folded into
single integer loads, as shown in Example 5.

%data = load b32, %p
%v = bitcast %data to i32
​ =>
%v = load i32, %p

Example 5

To find the optimisation opportunities, we will run the benchmarks. We will identify
regressions and based on them select the candidates for optimisation. For example, we
can look at the number of bitcasts from the byte type to integers, or the number of cast
instructions that can be substituted with a bitcast, etc.

https://github.com/llvm/llvm-project/blob/main/libcxx/include/cstddef#L87

Evaluating soundness and performance

The equivalence of the semantics and implementation of the proposed change will be
established with Alive2. Moreover, carefully-written FileCheck tests and Phabricator
reviews will reduce the risks of bugs.

The change in performance that the byte type may introduce also needs to be analysed.
Particularly, the change in compile-time and runtime will be investigated to account for
any regression. For that, we plan to use the LLVM test suite [11].

Deliverables

Prior to the community bonding period and the announcement of the projects, I plan to deepen
my understanding of the C/C++ standard with respect to memory semantics, LLVM IR memory
model, the alias analysis in LLVM and the current problems with memory optimisations. I have
already started looking into these issues, and plan to continue to do so. Additionally, I will
continue working on some simple fixes to bugs reported in the Alive2 dashboard [12].

Community bonding period: May, 17th - June, 6th

I intend to carry on with researching and studying the semantics of the current
standards and the memory models, as well as other-memory-related issues like
type punning, aliasing, etc. I plan to define the semantics of the new byte type
and collaborate with the community and stakeholders to make sure that the best
option is chosen.

Additionally, I will carry on working on simple bugs reported by Alive2.

Phase 1: June, 7th - July, 16th

Weeks 1-2
The first two weeks are dedicated to introducing the byte type to the LLVM IR. I
plan to define and implement the supported operations (e.g. making bitcast
aware of the new type and document the changes in the LLVM LangRef)

Weeks 3-4
For the next two weeks, I plan to add support for the byte type to Clang and
SelectionDAG. This involves verifying the correctness of lowerings from C/C++ to
LLVM IR and from LLVM IR to SelectionDAG.

Weeks 5-6
During the last two weeks of the first phase, I will conduct performance
experiments, accounting for changes in compile-time and in run-time. I plan to

https://llvm.org/docs/TestSuiteGuide.html
https://web.ist.utl.pt/nuno.lopes/alive2/

analyse any sources of regression, and come up with certain optimisations (e.g.
folding byte to integer cast into a single integer load) to implement in Phase 2.
These two weeks also include extra time for any blocking issues.

Phase 2: July, 17th - August, 23rd

Weeks 7-8
During the first weeks of the second phase I plan to fix instcombine pass to
change the memcpy and memmove optimisations. I will analyse the performance
and validity of the changed optimisation passes with regressions tests and Alive2
respectively. I will also save some time to patch any other optimisations that may
be blocked, or may need to support the byte type as well.

Weeks 9-10
During the following two weeks, I plan to continue working on the remaining
optimisation fixes. I also plan to introduce new optimisations to improve any
performance regression. The new optimisations will be analysed with Alive2 and
benchmarked.

Week 11
Last week of the second phase is left to account for any blocking issues and
unforeseen challenges. It is also dedicated for the final report writing.

Throughout the project, I plan to keep clear documentation of what has been done, actively
participate in discussions within the community, and test and benchmark the new changes, so
that any performance regression is taken into account straight away.

About me

I am a final year Maths and Computer Science student at Imperial College London. I am
interested in performance engineering, optimisation and compilers. At university, I have
successfully completed Compilers, Performance Engineering and Advanced Architecture
courses, which involved developing a compiler from scratch, optimising C++ code, and
understanding the impact of compiler optimisations on program execution. I have also taken a
Reasoning about Programs course that taught me how important program verification can be.
For my bachelor’s thesis, I am developing a LLVM-based backend for NMODL compiler
[repository], particularly focusing on the vectorisation aspects. Last year I participated in GSoC
2020 with the MLIR project, developing a conversion from SPIR-V dialect to LLVM IR dialect
[summary]. I thus have experience with the workflow of contributing patches via Phabriacator,
as well as aware of the C++ Clang coding standards. I have contributed multiple patches to the
MLIR/LLVM projects, as well as have started fixing bugs reported by Alive2 [commits].

https://github.com/BlueBrain/nmodl
https://github.com/georgemitenkov/GSoC-2020
https://reviews.llvm.org/people/revisions/20154/

References

 [1] Alive2 on GitHub: https://github.com/AliveToolkit/alive2
 [2] Reconciling High-Level Optimizations and Low-Level Code in LLVM:
 https://web.ist.utl.pt/nuno.lopes/pubs/llvmmem-oopsla18.pdf
 [3] Semantics of memcpy: http://www.cplusplus.com/reference/cstring/memcpy/
 [4] Semantics of memmove: http://www.cplusplus.com/reference/cstring/memmove/
 [5] Taming Undefined Behaviour in LLVM:
 https://www.cs.utah.edu/~regehr/papers/undef-pldi17.pdf
 [6] Semantics of uninitialized_copy:
 https://en.cppreference.com/w/cpp/memory/uninitialized_copy
 [7] LLVM LangRef: https://llvm.org/docs/LangRef.html
 [8] Reference on char types: https://en.cppreference.com/w/cpp/language/types
 [9] std::byte semantics: https://en.cppreference.com/w/cpp/types/byte
[10] std::byte declaration:
 https://github.com/llvm/llvm-project/blob/main/libcxx/include/cstddef#L87
[11] LLVM’s test suite: https://llvm.org/docs/TestSuiteGuide.html
[12] Alive2 dashboard: https://web.ist.utl.pt/nuno.lopes/alive2/

https://github.com/AliveToolkit/alive2
https://web.ist.utl.pt/nuno.lopes/pubs/llvmmem-oopsla18.pdf
http://www.cplusplus.com/reference/cstring/memcpy/
http://www.cplusplus.com/reference/cstring/memmove/
https://www.cs.utah.edu/~regehr/papers/undef-pldi17.pdf
https://en.cppreference.com/w/cpp/memory/uninitialized_copy
https://llvm.org/docs/LangRef.html
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/types/byte
https://github.com/llvm/llvm-project/blob/main/libcxx/include/cstddef#L87
https://llvm.org/docs/TestSuiteGuide.html
https://web.ist.utl.pt/nuno.lopes/alive2/

