QNRRVM

Polkadot Treasury Proposal
KAGOME - C++ implementation of Polkadot Host
Milestone 4

Proponent:

1544YD9AzZNXq3Bickbk4rGRQ5piRP5AP9b38Nw6EboCx58g3 (Quadrivium)
Period: 01.11.2024 - 01.09.2025 (10 months)

Date of submission:

Requested allocation: $981°800 | 981°800USDC

Previous treasury proposal: Milestone 3

%) KAGOME

Fourth milestone scope:

° Security assessment of new features by SRLabs
° Libp2p coroutines revamp
° Claim queue

Grid in approvals (retroactive)
Remove async backing params
Trie caching
Traces
Faster erasure coding (RFC-139)
Pending code storage key (RFC-123)
Standardize compressed blob prefixes (RFC-135)
Reputation system for disputes and statement distribution
PVF improvements (retroactive):
o PVF execution parameters
o PVF priority
o PVF unix socket
o PVFclone
e Constrain parachain block validity on a specific core (RFC-103, retroactive)
e Networking improvements (retroactive)
o QUIC support
o Audi-v3 (RFC-91)

https://docs.google.com/document/d/1NOkXMSAOYYgm_NCEzuTCKE-rl5MnlaZD3FN8v0otYbc/edit?tab=t.0#heading=h.yagc8jqu1d54

QNRRVM

o Parallel sync
e Tests & post-security audit improvements (retroactive)

1. Context of the proposal:

KAGOME is a C++ implementation of the Polkadot Host that brings clients diversity
to Polkadot and Kusama networks.

Diversifying Polkadot’s operating infrastructure is paramount to raising the
ecosystems resilience and to open it up to a larger community of innovators.
Towards these objectives, the Web3 Foundation aims to have more node operators
running KAGOME in the next cohorts of the Decentralized Nodes Program.

By introducing KAGOME and other client implementations, we enhance client
diversity within Polkadot, mitigating risks associated with fatal bugs, fostering
innovation, and expanding the development community.

During previous work as part of _Polkadot treasury proposal 3, the following goals
were achieved:

e Grid and cluster topologies

e FElastic scaling

e Disabled validators mechanism
e Validation v3 protocol

e Systematic chunks

[J

Security assessment (by SRLabs)

These results allowed us to become the first alternative Polkadot Host
implementation to join the Polkadot validating set alongside existing validators
running Polkadot-SDK. The KAGOME validator is also launched on Kusama and
Westend.

This proposal requests funding for the next 4 months, in addition to the previous 6
months of work on features that were retroactively implemented (marked as "Done"
in Section 4). This funding is needed to implement new RFCs and introduce new

https://github.com/qdrvm/kagome
https://wiki.polkadot.network/docs/learn-polkadot-host
https://medium.com/web3foundation/the-second-cohort-of-the-decentralized-nodes-is-live-e2ca97e21108
https://medium.com/web3foundation/the-second-cohort-of-the-decentralized-nodes-is-live-e2ca97e21108
https://polkadot.subsquare.io/referenda/925
https://drive.google.com/file/d/1N3nYjCPFB2hfpd9dXPtWesi4YCOOl57N/view?usp=drive_link
https://x.com/Web3foundation/status/1909494656687391166?t=_bgpZqqfOmZ9zfQK0hn2Lw&s=19
https://x.com/Web3foundation/status/1909494656687391166?t=_bgpZqqfOmZ9zfQK0hn2Lw&s=19
https://apps.turboflakes.io/?chain=kusama&app=onet#/validator/5CwU5roNrwZN2wkvkAaxXFc8NDeC9dZ8uZkHf1M7WvU4Xm4c?mode=history

QNRRVM

features to ensure the KAGOME validator's stability and compatibility with
Polkadot-SDK.

2. Problem statement

Client diversity is essential for the security and resilience of Polkadot as it helps to
mitigate the risk of bugs and exploits. If there is only one implementation then any
bug or exploit that is found in that implementation could potentially bring down the
entire network. However, with multiple implementations, the risk of a bug or exploit
affecting all nodes in the network is greatly reduced.

Another advantage of having multiple clients is that it is opening the way for having
another team that already sees the end state of the protocol and therefore has the
advantage to implement protocol in the most optimal way.

The importance of having multiple client implementations was highlighted multiple
times by Polkadot twitter (source), and Web3 foundation RFP (source). Moreover,
W3F recognizes clients diversity importance and allocates 10 million DOT prize for
the future multiple implementations of JAM protocol.

To learn more about multi-client philosophy and KAGOME Polkadot Host
implementation watch:

e Building alternative clients in Polkadot | Polkadot Decoded 2023
e Polkadot Host architecturein 2024 | SubO Asia 2024

3. Alignment with JAM
Quadrivium is also developing a JAM client alongside KAGOME.

However, we recognize the importance of multiple Polkadot Host implementations
today, especially since most features are already available and KAGOME is
compatible with the Polkadot SDK. Moreover, it's not anticipated that JAM will be
launched within the next one or two years.

Also JAM is not the end of the story for Polkadot clients. We will still need parachain
clients which will be using Polkadot-SDK even when the JAM chain is live.

https://twitter.com/Polkadot/status/1707031181219225653
https://github.com/w3f/Grants-Program/blob/1d60558a028f79635b37d8830ab650db0eb57dcc/docs/RFPs/alternative_polkadot_host_implementations.md?plain=1
https://youtu.be/TnENz6I9l8A
https://youtu.be/Lv2KQ2EDyM8?si=ZmWBINzMwEqbMb90

QNRRVM

Luckily, we can repurpose much of the KAGOME codebase for the future JAM client
implementation. For instance:

1. Grandpa - fully implemented and audited.
2. SASSAFRAS - partially implemented.
3. SCALE - fully implemented.

But since we didn't initially intend to reuse these components, some refactoring of
KAGOME is required. This will enable these components to be reusable and easily
integrated into the future JAM client implementation.

4. Proposed feature set
I. Libp2p coroutines revamp

Libp2p, a modular networking stack enables peer-to-peer communication and
interaction between Polkadot nodes. Quadrivium actively maintains a C++
implementation of libp2p.

C++ libp2p library was written in 2019 and since then was actively maintained by our
team for the needs of the Polkadot Host implementation.

Today we recognize the need of substantial refactoring aimed at simplifying its
asynchronous code which was the place where we spent most of the time during
troubleshooting KAGOME. Namely, we plan to take advantage of coroutines features
which we didn’t have 6 years ago. These changes will be introduced into:

e Reading/Writing operations: update of read, readSome, writeSome operations
that take callback that is invoked upon completion

e Connections lifecycle: establishing connection, accepting connections, and
upgrading connections all involve sequence of asynchronous steps currently
managed via callbacks

e Protocol handling: protocol implementations like Ping and ldentify involve
asynchronous request/response cycles over streams, managed with callbacks

e Muxing: Multiplexers like Yamux and Mplex manage multiple logical streams
asynchronously over one physical connection, involving event handling and
state management often suited for callbacks or state machines.

With coroutines asynchronous network operations could be written in a more linear,
sequential fashion. Instead of:

https://github.com/libp2p/cpp-libp2p/
https://github.com/libp2p/cpp-libp2p/

QNRRVM

C/C++
connection->read(buffer, size, [=](outcome::result<size_t> res) {

if (!'res) return; // handle error

connection->write(data_to_write, size, [=](outcome::result<size_t>
w_res) {

if (!w_res) return; // handle error

1)
3

We can potentially have:

C/C++
Task<> handleConnection() {

try {

size_t bytes_read = co_await connection->readAsync(buffer, size);
// Process data...
co_await connection->writeAsync(data_to_write, size);
// Continue logic...
} catch (const std::exception& e) {
// Handle error

}

co_return;

QNRRVM

Status: Not started
Il. Gridtopology for approvals

To ensure fast propagation of Assignment and Approval messages Grid topology
could be used. With grid any message reaches its destination within two hops and
number of connections per validator is limited to sqrt{n}

Status: [4Done
Links:

e https://aithub.com/gdrvm/kagome/issues/2404

lll. Fair claim queue

The claim queue is a structure used in Polkadot to manage the scheduling and
allocation of core time among parachains. It keeps track of the claims each
parachain has to core time slots, ensuring that each parachain gets a fair share of
core time based on its assignments.

However the current implementation doesn't guarantee that each parachain gets a
fair share of core time, potentially allowing more aggressive parachains to starve
others.

This concern was recently addressed by Polkadot-SDK and should be developed in
KAGOME as well.

Status: Not started
Links:

e https://github.com/paritytech/polkadot-sdk/pull/4880
e https://github.com/paritytech/polkadot-sdk/pull/7114

IV. Removal of async backing params

We can deprecate and remove AsyncBackingParameters, specifically
max_candidate_depth and allowed_ancestry_len, as they have been superseded by
the claim queue. The claim queue already provides mechanisms to enforce limits
more accurately, including accounting for parachains sharing a core and elastic
scaling.

https://github.com/qdrvm/kagome/issues/2404
https://github.com/paritytech/polkadot-sdk/pull/4880
https://github.com/paritytech/polkadot-sdk/pull/7114

QNRRVM

Status: Done

Links:

V.

https://github.com/agdrvm/kagome/issues/2352
https://github.com/paritytech/polkadot-sdk/issues/5079
Tracing

Tracing systems like Jaeger/Tempo can help improving KAGOME in multiple ways:

Performance Bottleneck Identification: |dentify slow operations in the
consensus mechanism, block validation, or networking components.

Behavior Analysis: Understand how different parts of the system behave under
various conditions or load scenarios.

Root Cause Analysis: When issues occur in production, tracing helps pinpoint
the exact component or function causing the failure.

Seamless Integration: Integrate well with other observability tools like logging
and metrics systems, providing a comprehensive view of application's health.
Enhanced Visualization: Visual representation simplifies identifying
performance issues, errors, and unusual patterns, making it easier to analyze
system behavior.

We require additional research on KAGOME, but we have had positive experience

using

Tempo and OpenTelemetry, and we will primarily focus in that direction.

Status: 3 Not started

Links:

VI.

https://grafana.com/oss/tempo/

https://opentelemetry.io/

State trie caching

KAGOME implements Merkle-patricia trie that stores the state of the blockchainin a
secure manner allowing efficient storage proof generation. However, trie
construction by itself has certain drawbacks, which do not allow it to perform
key-value access operations faster than O(log(n)) complexity, where n is the number
of entries in a state database. This problem is very well explained by Basti from Parity
during Sub- 2022 (link).

https://github.com/paritytech/polkadot-sdk/issues/5079
https://grafana.com/oss/tempo/
https://opentelemetry.io/
https://www.youtube.com/watch?v=OoMPlJKUULY&t=1295s

QMNARVM

According to our benchmarks storage access operations consume up to 42% of total
execution time of the block. Therefore, we may gain drastic improvement in speed if
we boost read operations.

However, to perform write and proof operations on trie, we still need to read its
nodes which have O(log(n)) complexity. We will address this issue as well during our
implementation.

To boost performance state cache will be introduced:

State cache is a copy of key-value state stored in the trie, that is put into a fast
hashmap. Whenever there is a read operation, we will read entries from the cache
instead of going into the trie

We should also take into consideration that since the state trie operating in a
blockchain environment there is a possibility of forks, which we should take care of.
A possible approach to achieve this is storing a diffs corresponding to unique forks
that gather the writes on top of cached state cache.

Status: In progress

VIl. Faster erasure coding (RFC-139)

Erasure coding is a crucial part of Polkadot’s Data availability. RFC-139 proposes
changes to the erasure coding algorithm and the method for computing the erasure
root to improve performance. The changes involve switching to a new erasure
coding algorithm described in the Graypaper and replacing the Merkle Patricia Trie
with a Binary Merkle Tree for computing the erasure root. These changes are
expected to significantly improve encoding and decoding speeds, reduce proof
sizes, and enhance verification efficiency.

Status: Not started
Links:

e https://github.com/polkadot-fellows/RFCs/pull/139

VIll. Pending code storage key (RFC-123)

RFC-123 introduces a new intermediate storage key, :pending_code, for runtime
code in the Polkadot ecosystem. The goal is to ensure that the new runtime code is

https://github.com/polkadot-fellows/RFCs/pull/139

QNRRVM

stored under a different key before being moved to its final location, reducing the
risk of incorrect state decoding and improving the reliability of runtime upgrades.

Status: Started
Links:

e https://qgithub.com/polkadot-fellows/RFCs/pull/123
e https://github.com/gdrvm/kagome/pull/2427

IX. Standardize compressed blob prefixes (RFC-135)

RFC-135 aims to standardize the identification of compressed blob types without
decompression. It proposes introducing a set of unique prefixes for different blob
types and compression methods, improving the handling and routing of various
blob types, and supporting future work involving non-Wasm parachain runtimes.

Status: Not started

Links:
e https://github.com/paritytech/polkadot-sdk/issues/784
e https://aithub.com/gdrvm/kagome/issues/2068
e https://github.com/qgdrvm/kagome/issues/2060
e https://aithub.com/gdrvm/kagome/issues/2005

X. Reputation system for disputes and statement distribution

As part of security assessment KAGOME team introduced a reputation system for
managing peer interactions within the dispute coordinator and statement
distribution modules. This system aims to track and update the reputation of peers
based on their behavior, applying penalties for actions such as invalid signatures,
unauthorized requests, and exceeding rate limits.

This enhances the system's ability to handle misbehaving peers, thereby improving
network reliability.

Status: Done

Links:
e https://github.com/qdrvm/kagome/pull/2407

https://github.com/polkadot-fellows/RFCs/pull/123
https://github.com/qdrvm/kagome/pull/2427
https://github.com/paritytech/polkadot-sdk/issues/784
https://github.com/qdrvm/kagome/issues/2068
https://github.com/qdrvm/kagome/issues/2060
https://github.com/qdrvm/kagome/issues/2005
https://github.com/qdrvm/kagome/pull/2407

QNRRVM

XIl. PVFimprovements (retroactive)
PVF execution parameters

This change aims to update the PVF execution timeout to be derived from runtime
parameters rather than configuration files. This change intends to make the timeout
settings more dynamic and adaptable to different execution environments.

Status: Done
Links:

e https://github.com/gdrvm/kagome/pull/2218
PVF priority

To ensure efficiency of the PVF execution process KAGOME team split the PVF queue
by job kind, and prioritize the processing of approval jobs over backing jobs.

Status: Done
Links:

e https://github.com/gdrvm/kagome/pull/2305
PVF unix socket

The Kagome team replaced the use of stdin/stdout with Unix domain sockets for the
PVF process in the Kagome project. This change aimed to improve the inter-process
communication mechanism by adopting a more robust and efficient method.

Status: Done
Links:

e https://github.com/gdrvm/kagome/pull/2327

PVF clone

As suggested by the security assessment of KAGOME, to enhance the security of the
pvf worker process it was important to implement a secure clone mechanism for
each job.

QNRRVM

Status: Done
Links:

e https://aithub.com/gdrvm/kagome/pull/2307

XIll. Constrain parachain block validity on a specific core (RFC-103,
retroactive)

This change introduces core index commitments and a session index field in
candidate receipts to secure elastic scaling with open collator sets. This change
aims to enhance the security and robustness of the parachain block validation
process.

Status: Done
Links:

e https://github.com/gdrvm/kagome/pull/2282
e https://aithub.com/polkadot-fellows/RFCs/pull/103

XIl. Networking improvements (retroactive)
QUIC support

The KAGOME team implemented QUIC transport into cpp-libp2p using the
nexus-lsquic library based on boost::asio.

QUIC is UDP based transport that reduces latency by minimizing the handshake
process and enabling faster data transmission. QUIC supports multiple streams
within a single connection, reducing the risk of head-of-line blocking and improving
data throughput.

Status: Done
Links:

e https://github.com/gdrvm/kagome/pull/2298
e https://github.com/libp2p/cpp-libp2 ull/254

Audi-v3 (RFC-91)

https://github.com/qdrvm/kagome/pull/1782
https://github.com/qdrvm/kagome/pull/2307
https://github.com/qdrvm/kagome/pull/2282
https://github.com/polkadot-fellows/RFCs/pull/103
https://github.com/qdrvm/kagome/pull/2298
https://github.com/libp2p/cpp-libp2p/pull/254

QNRRVM

By implementing RFC-91 KAGOME team added a new creation time field for
authority discovery records stored in the Distributed Hash Table (DHT). This
enhancement is intended to improve the efficiency and accuracy of authority
discovery within the network so that nodes can determine which record is newer and
always decide to prefer the newer records to the old ones.

Status: Done
Links:

e https://github.com/polkadot-fellows/RFCs/pull/91
e https://github.com/gdrvm/kagome/pull/215]

Parallel synchronization

For KAGOME as Polkadot validator it is very important to always be on the tip of the
chain by downloading the highest blocks as soon as possible. For that purpose sync
protocolis used.

Previously KAGOME was requesting a block from the block announce sender. To
speed up the process of acquiring the block KAGOME team improved this logic by
sending multiple block requests to different peers per each block announcement.
Similar improvement was made to the logic of catch up requests that are used to
fetch the latest GRANDPA justifications.

Status: Done
Links:

e https://aithub.com/gadrvm/kagome/pull/2320
e https://github.com/gdrvm/kagome/pull/2317

XIV. Faster state pruner (retroactive)

The Polkadot Host's state pruner is a critical component responsible for removing
unused state, which stores account information. Storage can quickly fill up without
the state pruner. Simultaneously, it is essential to track state values optimally to
ensure fast block execution.

We introduced optimizations by moving caching of computed merkle values inside
trie nodes to improve computation reuse. We also refactored the trie pruner to

https://github.com/polkadot-fellows/RFCs/pull/91
https://github.com/qdrvm/kagome/pull/2151
https://github.com/qdrvm/kagome/pull/2320
https://github.com/qdrvm/kagome/pull/2317

QNRRVM

operate on a separate thread, and enhanced the pruning process, and introduced a
benchmark for trie pruning.

Status: Done
Links:

e https://qgithub.com/gdrvm/kagome/pull/2376

XV. Precompilation strategy

KAGOME utilizes WasmEdge to compile and execute Parachain Validation Functions
(PVF). Enabling high optimization during compilation can potentially yield the
fastest runtime execution. However, it is crucial to compile PVF code quickly to avoid
missing voting slots.

To address this, we will introduce precompilation strategies that allow
customization of parachain code precompilation. For instance, we can initially
precompile all PVFs using the lowest optimization setting and then recompile in the
background with higher optimization levels.

Status: Not started

XVI. Tests and security assessment fixes (retroactive)

As suggested by security assessment to ensure conformance with Polkadot-SDK
KAGOME team implemented a lot of unit tests that correspond to existing tests in
Polkadot-SDK. Tests cover functionality in backing, chunks recovery, grid topology,
and more.

KAGOME team also addressed many issues pointed out by SRLabs team to ensure
security of KAGOME

Status: Done

Links:
e https://github.com/gdrvm/kagome/pull/2231
e https://github.com/gdrvm/kagome/pull/2240
e https://aithub.com/gdrvm/kagome/pull/2413
e https://github.com/gdrvm/kagome/pull/2238

https://github.com/qdrvm/kagome/pull/2376
https://github.com/qdrvm/kagome/pull/2231
https://github.com/qdrvm/kagome/pull/2240
https://github.com/qdrvm/kagome/pull/2413
https://github.com/qdrvm/kagome/pull/2238

QNRRVM

e https://qgithub.com/gdrvm/kagome/pull/2389
e https://github.com/gdrvm/kagome/pull/2321

XVIl. DevOps and QA maintenance

In order to constantly ensure the quality of KAGOME as well as keep it compatible
with Substrate (and potentially other Host implementations such as Gossamer)
Quadrivium maintains, monitors and improves multiple environments for KAGOME.

It is important to notice any incompatibilities if any as soon as possible. Therefore
we maintain multiple syncing and validating nodes:

e Polkadot validating node
e Kusama validating node x2
e Westend validating node x2

Moreover, we are maintaining the list of zombienet tests and constantly improving
our Cl to conveniently execute them. During the past 6 months we introduced:

e Introduce ARM builds
e Improved Cl
e Migrated some infrastructure to Netcup

In addition, our QA team is constantly ensuring quality of the most recent KAGOME
features by running them against different versions of Polkadot-SDK to quickly
notice incompatibilities and create bug reports. In addition we conduct regression
test scenarios before every release.

5. Security Assurance (by SRLabs)

KAGOMPE’s contribution to the Polkadot ecosystem is providing a robust and secure
alternative client implementation for node operators in the Polkadot ecosystem.
Following the initial security audit conducted by SRLabs on KAGOME v0.9.3,
followed by the Milestone 3 security audit, it is imperative to assure code changes to
continually safeguard the integrity and resilience of KAGOME’s implementation.

This section outlines the scope and activities for the next phase of the security
assurance, emphasizing proactive measures and collaborative efforts to enhance
security over time.

Objectives of the Security Assurance:

https://github.com/qdrvm/kagome/pull/2389
https://github.com/qdrvm/kagome/pull/2321
http://gossamer/
https://drive.google.com/file/d/1dJNngNrz48vrg27oXzNhJsGU99y6PZNA/view?usp=sharing
https://polkadot.polkassembly.io/referenda/925

QMNARVM

e Assure changes to KAGOME before they go live:
Ensure that all modifications to KAGOME are thoroughly reviewed and secured
prior to deployment, minimizing the risk of vulnerabilities being introduced in
the production environment

e Ensure code quality and security assurance
Implement code review and security assurance processes to maintain high
code quality standards, detect potential vulnerabilities early, and ensure
robustness of KAGOME’s implementation

Support scope for this milestone:

The scope of this security assurance milestone resolves around the following key
activities, but is not limited to:

A. Conduct scheduled security audits and follow milestone PRs of KAGOME
a) Perform security audits on the new features developed since the earlier
audit, including:

Pending code storage key (RFC-123)

Standardize compressed blob prefixes (RFC-135)

PVF improvements

Networking improvements

Audi-v3 (RFC-91)

Parallel sync

Faster state pruner

Constrain parachain block validity in a specific core (RFC-103)

0O O O 0o O O O O

b) In collaboration with the KAGOME development team, monitor pull requests
(PRs) submitted to the KAGOME repository. The KAGOME development team will
guide which PRs require detailed security audits, ensuring comprehensive review
and validation before integration into the main codebase

Please note that this does not include an in-depth review of lilp2p yet so to not
delay the completion of this Milestone 4. This additional scope shall be included
in Milestone 5 after the community received and accepted Milestone 4.

B. Additional security assurance measures upon request

Provide expert consultation and brainstorming sessions to explore and
recommend additional security measures. These sessions will be conducted upon

QMNARVM

request and will focus on approaches to enhance the overall security framework
of KAGOME
e Conduct brainstorming sessions to identify potential security
vulnerabilities in upcoming features or changes
e Engagein discussions on best practices and security measures that can
be integrated into KAGOME
e Provide recommendations for
o Security testing methodologies, such as fuzzing
o Protocol and architecture enhancements
o Risk mitigation strategies

Joint alignment sessions will be conducted between Quadrivium and SRLabs to
prioritize the support scope during this milestone. This session will ensure that
the most critical security needs are addressed promptly and effectively.

The security assurance for KAGOME by SRLabs is designed to be adaptive and
responsive, addressing the evolving needs of the project. By ensuring thorough
audits of code changes, conducting in-depth reviews and exploring additional
security measures, we aim to maintain and enhance the security of KAGOME. This
approach will help KAGOME its goal of providing a secure and reliable client
implementation for the Polkadot ecosystem.

6. Projected task allocation and payment details

Quadrivium development team

To come up with the total requested payment we provide each task with the
man-hours estimate and multiply by hourly rate which is $120/h. This rate was
selected to ensure that all KAGOME-related costs are covered including:

Personnel costs

Taxes & compliance

Financial & administrative fees
Business development

Engineering manager
Senior C++ developer x 4.5
DevOps engineer x 0.5

QA engineer x 0.5

Pon -

QMNARVM

Release Epic Feature Description ETA Role
(hours | involved
)
v1.2.0 Libp2p Connection Update of read/write 100 Senior C++
coroutines |implementati | loops and handshake engineer +
revamp ons logic with co_await QA
Transport Multi-step upgrade 50 Senior C++
upgrader process engineer +
(RawConnection->Sec QA
ureConnection->Muxe
dConnection)
Multiplexers | Managing stream 50 Senior C++
states and handling engineer +
frames QA
Dialing/Liste | Logic for trying 50 Senior C++
ning multiple addresses to engineer +
establish best QA
connection
ProtocolMux | Negotiation state 50 Senior C++
er machinein engineer +
Multiselectinstance QA
will be upgraded to a
single coroutine
Integration Update KAGOME with | 50 Senior C++
into new interfaces engineer +
KAGOME QA
v1.1.0 Grid Integration of grid 100 Senior C++
topology topology for engineer +
for assignment and QA
approvals approval messages
v1.2.0 Fair claim New structure to 400 Senior C++
queue manage the engineer +
scheduling and QA

allocation of core
time among
parachains

QMNARVM

v1.1.0 Removal of Remove 100 Senior C++
async max_candidate_dep engineer +
backing th and QA
parameters allowed_ancestry_le
h params as
superseded by claim
queue
v1.2.0 Tracing Integration of Tempo 150 Senior C++
and Opentelemetry for engineer +
improved tracing of QA
KAGOME bottlenecks
and behaviour analysis
v1.2.0 State trie A state cache—a fast 300 Senior C++
caching hashmap copy of the engineer +
key-value state—wiill QA
be implemented. Read
operations will use the
cache, while write and
proof operations will
still involve trie reads
v1.1.0 Faster Faster EC to improve 100 Senior C++
erasure DA performance engineer +
coding QA
(RFC-139)
v1.1.0 Pending Updated logic forthe | 100 Senior C++
code runtime upgrade engineer +
storage QA
(RFC-123)
v1.1.0 Standardize Handling of different 100 Senior C++
compresse blob types. Crucial for engineer +
d blob future support of QA
prefixes non-WASM runtimes
(RFC-135) (e.g. PolkaVM)
v1.0.0 Reputation | Reputation Keeping track of 100 Senior C++
systemin systemin events produced by engineer +
parachains | statement peers participating in QA
protocol distribution | statement distribution

QMNARVM

and adjusting their
reputation based on

peers activity
Reputation Implement penalties 100 Senior C++
systemin for peers producing engineer +
disputes incorrect requests QA
protocol that may lead to
redundant work of
KAGOME validator
v1.0.0 PVF PVF Dynamically adjust 50 Senior C++
improveme | execution PVF params such as engineer +
nts params execution timeout QA
PVF priority | Split backing and 50 Senior C++
approval tasks PVF engineer +
queues QA
PVF unix Replaces stdin/stdout | 50 Senior C++
socket with unix socket engineer +
communications for QA
efficient interaction
between KAGOME
application and PVF
workers
PVF clone Spin up new PVF 50 Senior C++
worker processes engineer +
using clone instead of QA
fork calls. New
approachis
considered more
efficient and secure
v1.0.0 Constrain Introduces core 300 Senior C++
parachain index commitments engineer +
s;%zli(ty ona and a session index QA
specific field in candidate
block receipts to secure
(RFC-103) elastic scaling with

open collator sets

QMNARVM

v1.0.0 Networking | QUIC New libp2p transport | 300 Senior C++
improveme | Support that reduces latency engineer +
nts and minimizes QA
handshake process
Audi-v3 Creation time field 50 Senior C++
(RFC-91) for authority engineer +
discovery records QA
stored in the
Distributed Hash
Table (DHT)
Parallel sync | Sending multiple 150 Senior C++
requests per each engineer +
block announcement QA
v1.1.0 Faster state Optimized pruning of | 200 Senior C++
pruner Polkadot Host state engineer +
QA
v1.0.0 Tests & Unit tests ensuring 600 Senior C++
post-securi conformance with engineer +
ty audit Polkadot-SDK & QA
Improveme post-audit fixes
nts
DevOps and Maintenance of 800 DevOps
QA infrastructure for engineer +
maintenanc integration tests, QA
e(10 KAGOME nodes in
months) different networks,
and Clintegration in
Github
Project Tasks tracking, team 800 Engineerin
managemen management g manager
t(o
months)
Total 5300

QNRRVM

Hourly rate: 120$/h
Cost (in USD): $636°000
Cost (in USDC): 636°000

QMNARVM

SRLabs security assurance team

1. Code assurance lead
2. Senior code assurance auditors x 3
3. Expert code assurance auditor x 1
Task Description Hours | Costs
5A. Conduct a) Perform security audits on the new features | 1600 $291'200
scheduled developed since the initial audit, including:
security audits e Pending code storage key (RFC-123)
and follow e Standardize compressed blob prefixes
milestone PRs of (RFC-135)
KAGOME PVF improvements
Networking improvements
e Audi-v3 (RFC-91)
e Parallel sync
Faster state pruner
Constrain parachain block validity in a
specific core (RFC-103)
b) Security review of pull requests (PRs)
submitted to the KAGOME repository, guided
and prioritized by KAGOME development
team
5B. Additional Expert consultation on additional security 300 $54°600

security assurance
measures upon
request

measures (e.g. dynamic testing
improvements, security best practice
workshops)

Hourly rate: 182$/h

Cost (in USD): $345°800

Cost (in USDC): 345°800

Total cost (Quadrivium + SRLabs)

Cost (in USD): $9871°800

QMNARVM

Cost (in USDC): 981°800

Mentoring and technical support

The Web3 Foundation will partner on this proposal as technical advisor and
deliverables auditor to ensure the completed milestones are technically sound.

In turn KAGOME team will help W3F improve Polkadot Host specification by
reviewing spec changes. Kamil (KAGOME project lead) has already joined the Spec
committee to decentralize the process of spec development.

Please note funds will come from the community treasury and Web3 Foundation
technical team has no control over these funds and will not be rewarded as a
reviewer of the milestones. The team will serve the sole purpose of evaluating
deliverables in alignment with the community approval of this proposal and this
role is based on their past participation in this project.

https://github.com/Noc2/polkadot-spec/commit/4a52bc0f75923add230ecffe998c8fd22bb8d785
https://github.com/Noc2/polkadot-spec/commit/4a52bc0f75923add230ecffe998c8fd22bb8d785

QNRRVM

Appendix & additional information:

KAGOME presentations:

%4 Building alternative clients | Polkadot Decoded 2023
(%4 Polkadot Host architecture in 2024 | SubO Asia 2024
(%4 Optimizing Polkadot’s Data Availability | subO reset 2024

About Quadrivium

Quadrivium (https://www.qdrvm.io) is a blockchain infrastructure
development company founded in 2023. The company specializes in the
development of blockchain clients, peer-to-peer networking tools, and
zk-cryptography. Quadrivium develops KAGOME Polkadot Host
implementation, in partnership with the Web3 Foundation. The company also
maintains the C++libp2p library.

Quadrivium's mission is to build the infrastructure for a decentralized future.
The company believes that blockchain technology has the potential to
revolutionize many industries, and it is committed to developing the
open-source tools and services that will make this possible.

Teams current and past experience

e https://github.com/libp2p/cpp-libp2p/ - official implementation of libp2p

- a modular, upgradable network stack providing convenient interface for
networking layer in p2p networks

e https://github.com/filecoin-project/cpp-filecoin - C++ implementation of
Filecoin network protocol

e https://github.com/hyperledger/iroha - permissioned blockchain from
Hyperledger umbrella, that is currently being used in Cambodian CBDC
system

About SRLabs

SRLabs (https://srlabs.de/) is home to knowledge leaders securing critical
infrastructures in finance, blockchain, energy, and telecommunications. We
focus on hands-on hacking resilience — not compliance -, which we shape by
combining our hacking research with impactful consulting work for
innovation leaders that have a natural thrive for cutting-edge technologies.

https://www.youtube.com/watch?v=TnENz6I9l8A&t
https://www.youtube.com/watch?v=Lv2KQ2EDyM8&t=1085s&pp=ygUKc3ViMCBrYW1pbA%3D%3D
https://www.youtube.com/watch?v=dsI7JS447AY
https://www.qdrvm.io
https://github.com/libp2p/cpp-libp2p/
https://github.com/filecoin-project/cpp-filecoin
https://github.com/hyperledger/iroha
https://www.srlabs.de/

QMNARVM

SRLabs is one of the leading blockchain audit companies with experience in
many Substrate-based blockchains, including the Polkadot layer-O relay
chain and parachains built on top.

	Polkadot Treasury Proposal ​KAGOME – C++ implementation of Polkadot Host​Milestone 4
	1.​Context of the proposal:​
	2.​Problem statement
	3.​Alignment with JAM
	4.​Proposed feature set
	I.​Libp2p coroutines revamp
	II.​Grid topology for approvals
	III.​Fair claim queue
	IV.​Removal of async backing params
	V.​Tracing
	VI.​State trie caching
	VII.​Faster erasure coding (RFC-139)
	VIII.​Pending code storage key (RFC-123)
	IX.​Standardize compressed blob prefixes (RFC-135)
	X.​Reputation system for disputes and statement distribution
	XI.​PVF improvements (retroactive)
	PVF execution parameters
	PVF priority
	PVF unix socket
	PVF clone

	XII.​Constrain parachain block validity on a specific core (RFC-103, retroactive)
	XIII.​Networking improvements (retroactive)
	QUIC support
	Audi-v3 (RFC-91)
	Parallel synchronization

	XIV.​Faster state pruner (retroactive)
	XV.​Precompilation strategy
	XVI.​Tests and security assessment fixes (retroactive)
	XVII.​DevOps and QA maintenance

	5.​Security Assurance (by SRLabs)
	Objectives of the Security Assurance:
	Support scope for this milestone:
	Joint alignment sessions will be conducted between Quadrivium and SRLabs to prioritize the support scope during this milestone. This session will ensure that the most critical security needs are addressed promptly and effectively.
	
	The security assurance for KAGOME by SRLabs is designed to be adaptive and responsive, addressing the evolving needs of the project. By ensuring thorough audits of code changes, conducting in-depth reviews and exploring additional security measures, we aim to maintain and enhance the security of KAGOME. This approach will help KAGOME its goal of providing a secure and reliable client implementation for the Polkadot ecosystem.

	6.​Projected task allocation and payment details
	Quadrivium development team

	
	Hourly rate: 120$/h
	Cost (in USD): $636’000
	Cost (in USDC): 636’000
	
	SRLabs security assurance team
	
	Total cost (Quadrivium + SRLabs)

	Mentoring and technical support
	Appendix & additional information:
	
	KAGOME presentations:
	✅ Building alternative clients | Polkadot Decoded 2023
	✅ Polkadot Host architecture in 2024 | Sub0 Asia 2024
	✅ Optimizing Polkadot’s Data Availability | sub0 reset 2024

	About Quadrivium
	Teams current and past experience

	About SRLabs

