
Essential types

Towards the end of Layer 4 are definitions for the types used within the compiler. Here are the
most important ones:

hoon. The Hoon ast. A Hoon program is thus parsed into a hoon value. (Notice the difference in
capitalization.) Each rune in Hoon turns into a case of this large $%. For example ?& (“wutpad”
in the deprecated pronunciation) parses into a %wtpd. The type of the + of each case can be a
helpful reminder as to the abstract syntax. For example, noticing that %cnts takes a wing and a
list of [wing hoon] may give us a sense of what kind of operation %= could be. Some of the
non-runic cases correspond to the “primary expressions” of Hoon: for example, wing is for wing
expressions, like foo.bar (or just foo), rock and sand are for atomic literals, knit is for tape
literals, and tell and yell are for <foo> and >foo< respectively, whatever those are. Others do not
arise from parsing, but rather are internal shorthands generated and consumed during the
course of compilation: for example [%$ 6] is “get axis 6”, which could be expressed more
cumbersomely as [%wing ~[%& 6]]. Finally, the autocons case, as in nock, means making a cell
out of the results of the two expressions; i.e., it has the same semantics as %clhp.​

wing. A wing is a Hoon expression like “a.+6.c”. Abstractly, a wing is a list of limbs. A limb is
either a term (i.e. name, like “a”) or an axis (like “+6” in the concrete syntax). Axes are
represented by the %& case. Names are represented by the %| case, with the p/@ud counting
the number of ^s and the q/(unit term) containing the name, or ~ for “.” (i.e “current subject”).
The type also provides an extra case, a raw term, which is handled equivalently to %| with no ^s
and `that term. This is part of a recurring (mis)pattern of providing shorthands as duplicate
possibilities in the data types, rather than as helper functions.

type. The object of type inference and type checking in Hoon. Learn more at
https://urbit.org/docs/reference/hoon-expressions/advanced/, which you should probably read
right now.

spec. The user-facing “type” language’s ast. When you make a tree of $ runes, or parse
something in “type mode” the result is a spec. It is from specs, rather than types, that molds and
bunts are generated. Specs contain more information and draw finer distinctions than types; the
downconversion is more lossy than mere desugaring. (For example, if you manually specify a
bunt value for your spec, this information will not be present in the corresponding type.)
Incidentally, this conversion is never done directly; rather, one generates the code for the bunt
from the spec, then type infers across that. Both steps of this process are cached: the first in the
~+ of example:ax, the second in the compiler jet for play:ut.

nock. Nock code.

skin. An attempt to introduce something like other languages’ notion of pattern into hoon, rather
than reusing type for this.

https://urbit.org/docs/reference/hoon-expressions/advanced/

port, palo, vein, opal. These types are used to report the result of name resolution. The top
level result of name resolution is a port, which is either a palo (face (“leg”) or arm match) or a
pair of type and nock, corresponding to a =*. A palo is a pair of vein and opal. The vein is a list
of optional axes, reporting the path to get to the found name. The opal says what kind of match
it is. These types are very hard to track and poorly laid out, and will be discussed again in the
name resolution section below.

foot. A pair of ?(%wet %dry) and a hoon. Values of this unfortunately named type are used to
talk about arm bodies in cores as entities in their own right.

tiki. An intermediate data structure used in parsing ? (wut) runes, which indicates whether the
scrutinee (thing being matched) is direct (a wing) or indirect (a hoon). If indirect, it must be
tislused before being tested, and in fact this is enforced by the types in $hoon, where e.g. the
head of a ?- must be a wing. Additionally, if the user has applied a face at the top level of the
scrutinee expression, this is factored out into the (unit term) of the tiki, and gives rise to a =* so
the value is available under that name in the branches. The logic to generate the hoon,
including with an extra =+ and/or =* if needed, is found in the ah core of Layer 5.

vase. This is not an internal compiler data structure but rather an end-user-facing abstraction
that amounts to a very important entrypoint to the compiler. A vase is a pair of a type and a
completely untyped noun. The expectation is that the noun fit the type; if not, the vase is said to
be “evil.” A bunch of operations whose names begin with “sl” are provided in Layer 5 for
manipulating these values; these operations amount to invocations of the compiler.

Synopsis of the compiler

We now provide a brief outline of how the compiler is structured into cores and arms in
hoon.hoon. The goal here is not to understand what all of these parts are fully, but rather where
they are. Some parts will be explained in more detail in a more logical order immediately
following; others are summarized inline.

-​ Layer 4:
-​ Types

-​ Layer 5:
-​ Partial noun interpreter, operations on seminouns
-​ “Smart constructors” for +$type, which lift voids (bool, cell, core, hint, face, fork)
-​ Little code generation utilities and other such trifles
-​ ah. Tiki engine: producing %wt hoons from the intermediate data structures

emitted from the parser. Note that although you can say ?- (foo 2) %a !! %b !!
== in the concrete syntax, in the abstract syntax of $hoon, the scrutinee (thing
being tested) of ?- must be a wing. The foregoing expression must therefore be

converted into a =+ of (foo 2) followed by a ?- scrutinizing +2, and ah is the thing
that does this transformation.​
Sample: a tiki value.

-​ ax. Operations on specs​
Sample: a flag value (“fab,” unused) and the spec being operated on.

-​ autoname. The autonamer, which generates a face name which seems
suitable for a spec. This is the thing which turns |= =term … into |=
term=term …, effectively.

-​ example. Generates the code for producing the bunt (default) value
associated with the given spec.

-​ factory. Generates the code for producing the mold (normalization) gate
associated with the given spec.

-​ ap. Home of the desugarer.​
Sample: a flag value (“fab,” unused) and a hoon.

-​ Conversions between hoons and skins
-​ open. The desugarer, which rewrites runes to more simple runes.
-​ reek. Extract a wing from a hoon which is primarily about that wing (e.g.

%wing, %cnts)
-​ ut. The main compiler core. Roughly, any operation that takes a type goes here.

That type is factored (curried) into the sample of ut, where it is shared among all
the arms.​
State pinned in context:​
 - fan, rib. Used to track holds (%hold in type) as we expand them to make sure
we don’t get stuck in a loop​
 - vet. A flag that, if yes, means we are in “vetting mode” and should error out in
more circumstances​
 - fab. Comments refer to this flag as demarcating a “fabrication mode” or “test
mode,” which can be turned off (or on?) by ^%. Although it is duly passed into ap
and ax, the value is never read in live code, and has no effect on the operation of
the compiler.​
Sample: a type (“sut”). For the Three Operations, this is the subject type we are
operating with respect to.

-​ ar. The “texture” (skin) engine. This core implements type checking and
code generation for the new pattern matching subsystem.

-​ The Three Operations: mint, play, mull, and their subroutines.
-​ Various operations on types.
-​ Name resolution.

The Three Operations — {mint, play, mull}:ut

Mint, play, and mull are the central operations of the compiler. They are central in the sense that
they call pretty much everything else, and also in that they are at the core of what the compiler

“does.” Each of these operations is structured around a ?- scrutinizing the rune at the root of
whatever hoon is being processed. Let’s understand them one-by-one.

Mint

You know how you were taught that the compiler is a function [type hoon] -> [type nock]? Well
this is the thing that does that. It is therefore the principal entrypoint into the compiler. Let’s look
at its signature:

++ ut
|_ sut/type
 :: ..
 ++ mint
 |= [gol/type gen/hoon]
 ^- [p/type q/nock]

Sut and gen are the pair of subject type and program to compile. (Note how sut has been
“factored out” into the sample of ut.) The result p is the inferred type of the product of running
this code against the given subject type, and q is the generated code. So that’s how mint
embodies [type hoon] -> [type nock].

But what’s with the extra gol/type? This “goal type” is a mandatory convenience which allows
you to specify a type that q (the product type) must nest under when it is computed. Most
external users specify %noun for this. For that matter, most internal recursions reset it to %noun
as well. Honestly, I’m not sure why performing this check, if desired, isn’t the responsibility of the
caller. Anyway, the “internal subroutine” +nice inside of mint is what’s responsible for asserting
that the product nests under the goal.

Play

If you want to do type inference but not code generation, you call play. We certainly hope that
p:(~(mint ut s) %noun h) is equal to (~(play ut s) h). Of course, because Hoon is a strict
language, the former does much more work than the latter. In cases where mint doesn’t need
the nock for a subexpression (e.g. the first clause of a ^+), it calls play rather than recursing.

Mull

Mull is used in typechecking wetness. (Wetness is Hoon’s quixotic attempt to provide something
like parametric polymorphism.) Recall that a core type contains a formal payload type (q.q) and
an actual payload type (p). The formal is the type the core was compiled against, and the actual
is the type of the payload that we have in front of us, which may be different because we have
edited parts. In any core, these edits must conform to the variance model. Additionally, for dry
cores, the actual type must nest under the formal type; for wet cores, it must instead be the

case that the nock you’d get for the arm you’re pulling (FIXME or all the arms? Yes. (but
preserving this parenthetical so we can see the discussion)) would be the same whether
compiled against the formal or actual type. But actually generating these nocks would be
inefficient, so we instead “mull” the arm’s body against the two types. To mull a hoon against two
types is thus to confirm that compiling it against either type as subject would result in the same
code, while also returning the two (possibly different) product types.

Now let’s look at the signature of mull:

++ ut
|_ sut/type
 :: ..
 ++ mull
 |= [gol/type dox/type gen/hoon]
 ^- [p/type q/type]

Sut is the actual type. Dox is the formal type. Gen is the hoon we are contemplating. P is the
product type of the hoon when sut is taken to be the subject type. Likewise q is the product type
for subject type dox. Finally, gol is a type that p must nest under (like in mint).

Note that whether mulling succeeds (i.e. comes to the conclusion that the generated nocks
would be the same) is not captured in the return values (which are used for propagating
information to recursive callers), but rather in whether the operation errors out. If it does, it
pushes one of the infamous “mull-bonk” messages.

Mull has a single entrypoint, which is found towards the end of +fire. This use discards the
returned pair of types and is made only for the effect of any mull-bonk errors that may occur. All
other calls to mull are recursive calls (including from within mull’s subroutines).

Mine and mile: mint and mull for |% and |@

Minting and mulling the introduction forms of cores (i.e. the |% and |@ runes) are sufficiently
complex operations that they are factored out into two subroutines, mine:ut and mile:ut,
respectively. These are called via the “grow” internal subroutines of mint and mull.

(Playing a core is not similarly complex; one need merely assemble core type from the
immediately available data. In particular, remember that core types contain the parsed code of
their arms (sort of like an incorporated hold type for each arm), both to make typechecking the
mutual recursions easier, and to provide for wetness.)

Mile calles balk for the core’s chapters, which calles bake for their feet (arms). Meanwhile, mine
does all of its processing in-house.

There are two things to understand about this code. First, the ?-s with patterns like {~ * *} are
constructing the battery shape based on the shape of the map-tree. Second, note that bake
(again, ultimately a subroutine of mull) calls mull for dry cores but does nothing for wet cores.
This is because if we are producing a dry core deep inside a wet arm, we must make sure that
the core’s contents agree on how they’d support the formal and actual types of the wetness.
Meanwhile, if the produced core is, itself, wet this check should only occur at each consumer of
that core, so it doesn’t make sense to perform the check here. (In reality, should a three- or
four-way check be performed instead for these?) This apparent reversal is lampshaded, but not
explained, in a cheeky comment.

The et core: the Three Operations for %= (TODO: wordsmith this relationship better)

To handle the %cnts case, each of the Three immediately calls the corresponding arm of et:ut.
For example, mull calls (~(mull et p.gen q.gen) gol dox). Let’s look at the signature of the et
core:

++ ut
|_ sut/type
 :: ..
 ++ et
 |_ [hyp/wing rig/(list [wing hoon])]
 ++ play
 ^- type
 :: ..
 ++ mint
 |= gol/type
 ^- [type nock]
 :: ..
 ++ mull
 |= [gol/type dox/type]
 ^- [type type]
 :: ..
 --

(Pro tip: Any %=-related operation can be immediately sussed out by the fact that it takes a wing
and a (list [wing hoon]).)

This should be pretty self-explanatory at this point. Each arm of et does name resolution for hyp
in read mode (by calling find, discussed later), then assertion-wraps a call to a subroutine which
contains the main part of the implementation. For {mint, play, mull}:et:ut, these are {elbo, etco,
endo}:ut respectively. Note that among these subroutines’ definitions is a listing for “ergo” which
is an unused apparent alternative implementation of mint. The implementation actually used,
etco, instead forwards into the complex oc and ad cores.

Finally, note that beneath et are defined epla, emin, emul. These are presently unused.
Historically, they made it easier for the Three Operations’ jets to call into the et core.

Desugaring — open:ap

You may have noticed that the central ?-s of the Three Operations list only a small subset of the
runes defined in $hoon. Instead of being handled directly, all of the other runes are ultimately
translated (or desugared) into basic runes which are handled directly. This translation is done in
open:ap.

At the end of each Operation’s ?- is a * case. The corresponding code

-​ Passes the hoon being operated on into open:ap
-​ Checks to make sure the result is a different hoon. (It is an implementation error in the

compiler if it is not, which we detect and zap out on.)
-​ Recurs with that new hoon into whichever Operation we were doing

The implementation inside open:ap is in some sense the least effortful one that, given the above
dynamic, eventually results in a non-basic rune being translated properly. Instead of translating
a whole tree of runes into a corresponding tree containing only basic runes, open translates just
the root, leaving its subtrees unchanged to be subtrees of whatever combination of runes the
root becomes. Moreover, a rune need not open directly into a basic rune. Many runes desugar
into other non-basic runes. This is ok as long as a cycle is never formed, and it works because
one of the things that can happen when you recur back into, say, mint, with your
single-step-desugared hoon is that mint still doesn’t recognize the root rune and has to open it
again. For this reason, open is sometimes analogized to the macroexpand-1 operation of Lisps,
and the non-basic runes to Lisp macros.

Tl;dr: If you want to understand what a rune is/does, look for it in mint/play. If you don’t find it
there, it’s “syntactic sugar” and you should look for how it’s translated in open:ap.

Typing ?: — {gain, lose, chip}:ut; ax:ut

Recall that in Hoon, ?: has the curious property that, for certain test conditions, the subject
hypothesized for each branch is narrowed, or refined. For example, assuming a subject of type
*, in

?: ?=(@ .)
 <a...>
<b...>

<a…> will be compiled against subject type @, while <b…> will be compiled against type ^.
(The product types will then be combined in a %fork, i.e. unioned together; see below.) Because

all of the conditionally branching ? runes desugar to ?:, this discipline affects them as well, and
is a fundamental feature of the Hoon type system.

Let t be the first subhoon of a ?: — i.e. the subexpression that denotes the test to be performed.
Let S be the subject type. Then the subject type for the then clause will be (gain:ut t S), while
the subject type for the else clause will be (lose:ut t S). (Are you following along in play:ut?)

Looking at gain:ut and lose:ut, we see that they merely call chip:ut with & or | respectively. In
chip, we see that the test conditions which give rise to refinement are few: ?= and ?# give rise to
refinements on both branches, ?& gives rise to refinement only on the then branch (combining
the refinements that would have occurred from each of the conjuncts), and ?| gives rise to
refinement only on the else branch (likewise combining from the disjuncts). Finally, any
unrecognized rune is desugared to see if that helps.

(The partial refinement on conjunction and disjunction is presumably to avoid some kind of
combinatorial explosion, but is also rather unconvincing. This points at one of the several
reasons why traditional PL considers the if-expression-centric aspect of this scheme dubious.)

?= and ?# correspond to two styles of “pattern matching” available in Hoon. (Note that the thing
being tested in such a match must be a wing. This is so that we have a place in the subject to
refine in the first place.) The first uses a type as the pattern, and the second uses a skin. Also,
the second doesn’t work.

(Note that I said type, not spec. The concrete syntax will of course use a spec, but we don’t
make any use of this extra data, instead immediately translating the spec to a type by playing
across the code for generating the bunt (example:ax).)

Refining on a type match amounts to calling cool:ut, which does name resolution (find:ut) to get
the axis path for the wing (if it is instead a =*, we do no refinement), then edits (take:ut) that part
of the subject type by intersecting it with (fuse:ut) or subtracting from it (crop:ut) the type we’re
using as our pattern. (The gates named in parentheses in the foregoing are explained in the
later sections “The Algebra of Types” and “Axial Operations on Types.”)

Refining on a skin amounts to calling gain:ar or lose:ar for the then or else branches
respectively.

Fishing: Code Generation for ?= and ?#

Testing whether a value matches a given type or skin is called fishing for that type or skin. The
nock that actually executes these tests is generated by fish:ut and fish:ar:ut, respectively. If you
understand the types of type and skin and are fluent in nock, you should be able to read and
make sense of these functions directly, and I encourage you to. It will help to know that flan, flor,
and flip are small code generation utilities for doing boolean conjunction, disjunction, and

negation respectively, all of which amount to nock 6s. Also note how we track holds to make
sure we don’t get stuck in an infinite loop.

The Algebra of Types — {nest, fuse, crop}:ut

A set of operations which manipulate types in and of themselves, without relation to other
notions, forms a logical core of the compiler. The first of these are: the subtyping predicate
(nest), and the intersection (fuse) and subtraction (crop) of types. I like to call these an algebra
because, together with the %fork constructor of $type, they look like the operations of a Boolean
algebra. Unfortunately, however, the Boolean algebra laws are not followed, most notably in the
case of crop.

Nest

The Hoon type system is based on subtyping, and the nest:ut gate implements the subtyping
check. A type a is a subtype of b, morally (i.e., this is how it would operate in an ideal world), if
and only if every value of a is also a value of b. For example, 1 is an atom, but it is also a noun;
in fact every atom is a noun, so atom is subtype of noun. We sometimes write a ≤ b for this
relation. If we think in terms of sets (which is not technically correct, but is a useful intuition
pump), subtyping is like the subset relation. In a language with functions, if a function takes a b,
then you can pass it an a; indeed the actual argument types that are permitted are precisely
those that nest in the formal argument type. Of course, Hoon doesn’t have functions, so this
statement has to be modified into one about the formal (q.q) and actual (p) payload types found
in the core type at the time one of the arms is pulled.

Now let’s look at the signature of nest:

++ ut
|_ sut/type
 :: ..
 ++ nest
 |= [tel/? ref/type]
 ^- ?

The return value is true if a subtyping relationship is found to exist. The extra argument tel, if set
to &, means that instead of returning false to indicate nest failure, we error out with the familiar
“nest-fail” message. Finally, the order of arguments is such that testing a ≤ b means passing b
for sut and a for ref.

There are two things to note about the high-level structure of nest. First, like many other
operations that act on types, nest needs to make sure it doesn’t go into an infinite loop. Infinite
looping can happen (or rather could, if not for the intervention about to be described), for
example, if a hold (a pair of type and hoon), expands (by playing the hoon against the type) into

https://en.wikipedia.org/wiki/Boolean_algebra_(structure)
https://en.wikipedia.org/wiki/Boolean_algebra_(structure)

the exact same hold type. It can also happen for carefully constructed core types, which, instead
of having the return types of the arms embedded within, have the arms’ hoons, and likewise
require playing. To thwart this threat, we maintain state tracking the types we’ve seen at these
problem points. This state is pinned at the top of nest and is therefore implicitly passed to all of
the subroutines. The seg set tracks holds in sut that we’re in the process of expanding.
Whenever sut is a hold, we first check if it’s already in seg; otherwise we add it, play the hold
(repo:ut does this for us) and recurse. Likewise reg tracks holds in ref. Finally, gil tracks pairs of
[sut ref] that have already been considered, such that if they’re considered again we have a
problem. This is checked and added to whenever sut or ref is a hold, or both are cores.

Second, nest is organized into a number of “internal subroutines” packaged together into a core.
Two of these, dext and sint, are an example of a common naming pattern: in operations defined
in terms of a dext and sint, dext (after dexter, the Latin word for “right”) involves a ?- on one
argument, while sint (after sinister, for “left”) involves a ?- on the other. (Unfortunately, in (~(nest
ut sut) | ref), dext scrutinizes sut and sint scrutinizes ref. Oh well.) Additionally, dext is the main
entrypoint and typically handles the “meaty” or “complex” cases while sint handles simple cases
or cases that need a little bit of preprocessing before they can be shunted back to dext.

If you look intently at dext and sint, hopefully you can see that pretty much everything is simple
and corresponds to the behavior you’d expect: void and noun are bottom and top, atoms nest
according to the aura matching rules (as implemented by fitz of Layer 4; but note that the aura
rules you’re familiar with mean, absurdly, that nest is not transitive), cells nest if their heads and
tails nest, faces get stripped, holds get expanded, and forks mean that any or all of the disjuncts
must nest (depending on which side of the test they’re on). But cores are not simple at all;
nest-checking these involves a cumbersome and rather suspicious amount of checks: first we
check moisture, then we wrangle the formal and actual argument types (which are handled
differently in sut and ref, for no reason I can tell), then we verify variance compatibility (in deem),
and finally we confirm that the batteries have exactly the same names and shape (so
unfortunately no structural polymorphism / “duck typing”), and the arms, when played against
the formal argument types, nest pairwise.

Fuse

The fuse:ut gate implements “type intersection.” Morally, a value is in (~(fuse ut a) b) iff it is in a
and in b. I use the term “intersection” because this operation is analogous to the one by that
name in set theory.

The code here does more or less what you’d expect, except when it comes to cores, where it
shrugs and, rather unconvincingly, reinterprets them as cells with noun head (via repo:ut). Note
that because intersection is a commutative operation, we don’t need to separate the code into
dext and sint, and can instead recur with arguments swapped.​

Crop

The crop:ut gate implements “type subtraction.” Morally, a value is in (~(crop ut a) b) iff it is in a
and not in b. Accordingly, the union of (~(crop ut a) b) and b ought to be a, and the intersection
of a and (~(crop ut %noun) b) ought to be (~(crop ut a) b). (Unfortunately, in Hoon, as will be
seen, many things that should be are not.) Thus crop is like the “set difference” operator.

We see that like nest, crop maintains a set, bix, of observed holds, and follows a dext-sint
structure. As in fuse, the rules for cores are particularly unpersuasive. Subtracting an atom or
cell type from a core type yields that same core type, even if the subtrahend is [%cell %noun
%noun]. Meanwhile, subtracting a core from a core yields the first core, even if the first is a
proper subtype of the second. It is with cells, however, that the most notable problem occurs. If
you think about it algebraically, (~(crop ut %noun) a) is like the “set complement” of a, !a, and
we’d expect ![a b] = union([!a !b], [a !b], [!a b]). Unfortunately, this behavior would result in a
combinatorial explosion as the length of the tuple increases. So crop instead answers [%noun
!b] for this case. This behavior means that iterated pattern matching works for patterns like
[%foo *], but not for patterns like [[%foo *] [%bar *]], analogous to the oft used (Foo _, Bar _) in
Haskell. Ironically, we see the cost of this immediately in the code for crop: with tuple-like
pattern matching, we wouldn’t need the cumbersome dext-sint architecture!

%fork

When we take the intersection or subtraction of two types, we have to run a computation that
traverses these types and builds up a new type. The union of types, on the other hand, is
accomplished rather differently in this system. There is an actual case of $type, namely %fork,
to represent the union of types. If a and b are types, then their union is the “bigger” type [%fork
(sy a b ~)]. (Recall that sy makes a set containing its arguments. A convenience gate, or “smart
constructor,” fork (of the start of Layer 5) is provided to streamline the process of constructing
these %forks, so that the foregoing can be obtained by saying (fork a b ~).) The cost of handling
unions is thus moved from the places where they are made to the places where they are
consumed, which must iterate over these forks and do something sensible with them.

Note that this %fork construction is rife with representation problems. There are many ways to
represent what are conceptually the same type in different ways with nestings of %fork or by
combining forks with other constructions. For example [?(%a %b) ?(%c %d)] is the same as
?([%a %c] [%a %d] [%b %c] [%b %d]). In addition, an empty fork is the same as void. The fork
smart constructor detects some of these and replaces them with a canonical form, but cannot
catch them all. The %fork type also lets you construct “indiscriminable unions,” types which, in
the worst cases, essentially have no way for their values to be used. A more sensible, but more
difficult, thing to have done would have been to represent only discriminable unions in $type,
and have a +fork:ut to combine types into these. But it’s unclear if this can be made workable
given e.g. $^ or the encoding of both recursion and wetness as %hold.

Historical note: Apparently, crop and fuse were originally free constructions %crop and %fuse in
$type as well. These had to be removed because they easily lead to combinatorial explosions.
So the choice to make %fork rather than fork:ut was not an attempt at optimization.

Remark on the purpose of crop and fuse in Hoon, for people familiar with other subtyping-based
languages

The algebra of types is used for a different purpose in Hoon than in other languages that have a
similar structure. In these languages, we union together the types coming out of the branches of
an if expression to get the type for the whole. If the types coming out of the branches are
function types, taking the union of these means taking the union of the return types and the
intersection of the argument types — at contravariant positions in a type, the union operation
“flips” into being an intersection. Indeed, this is the only way type intersection arises in such a
language.

In Hoon, as in the other languages, we build a %fork for the result type of each ?:. But taking the
union is just combining two things into a data structure, not performing a recursive traversal of
the type trees. So type intersection does not arise from union in Hoon, but instead plays a
completely different role. Fusing (and cropping) are used solely for the typing rules of the ?: ?=
combo: as discussed above, the type being matched with is intersected with the subject for the
then branch, and subtracted from it for the else branch.

Axial Operations on Types — {peek, take, tack}:ut

Peek

Consider the type corresponding to the surface syntax [* ^ @]. What is the type of its +3? The
answer is [^ @]. Taking some axis of a type to get a type that models a subtree is called “axial
projection” and is implemented in peek:ut. Look at the signature:

++ ut
|_ sut/type
 :: ..
 ++ peek
 |= [way/?(%read %rite %both %free) axe/axis]
 ^- type

In addition to the arguments we expect, there is an extra argument “way” which describes the
access pattern we’re asking for, analogous to the “mode” argument of a file open operation in
unix. This “way” comes into play only when our access path takes us into the payload of a core;
whereupon it is checked against the core’s variance model using the peel:ut subroutine.

The function opens with some axis operations

?: =(1 axe)
 sut
=+ [now=(cap axe) lat=(mas axe)]

Cap and mas are functions which, given an axis >1, return the “head axis” (2 or 3) and “tail axis”
(axis of the thing in the left or right subtree) respectively.

We then pin an empty set of type to make sure we don’t go into an infinite loop when expanding
holds (if we do, rather than erroring we return %void). Afterwards, we discriminate on the tag of
the type. The only interesting cases are *, i.e. %face or %hint, which calls repo:ut to strip these
things off, and %core.

Looking at the code for %core, we see that the battery of a core is considered to have type
%noun, which is an understandable choice, but is yet another way in which cores don’t feel like
first-class citizens of the type system. If the path takes us into the payload, we peel to determine
whether we are able to access the sample and whether we are able to access the context. The
variable tow is pinned; it is 1 if we are accessing the whole payload, 2 if we’re accessing
something in the sample, and 3 if we’re accessing something in the context. This determines
which of the flags coming out of peel need to be true. If the all relevant access checks pass, we
recur into the actual payload type (as opposed to the formal payload type).

At this point, the code takes a very strange turn. You might think that if you’re not allowed
access to something, and you write code trying to access it, the result would be a compiler error.
And you’d be right, for modes other than %read. But the compiler will, for some reason which is
beyond me, allow you to read something which you don’t have access to; it’ll just strip away the
type information so you’ll see it as a %noun. This is analogous to the (similarly strange) situation
with batteries, although those you can access as %noun in any mode!

Take (and Tack)

Related to axial projection is axial editing. This allows us to take a value and replace a subtree
with something type-incompatible. The new value will have a modified type, and computing what
type it is is the job of take:ut. Witness the signature:

++ ut
|_ sut/type
 :: ..
 ++ take
 |= [vit/vein duz/$-(type type)]
 ^- [axis type]

A vein is a “search trace” as returned by the name resolution system, a list of possibly missing
axes. The interpretation of this as a single axis is provided by the tend:ut subroutine; the nonnull
axes are traversed from the root in reverse order. The first return value of take is the single axis
corresponding to this traversal. (Why take takes a vein while peek takes a single axis, and why
take feels the need to helpfully return this single axis even though doing so is conceptually
unrelated to the operation being performed, is just one of those mysteries, I suppose.) The
second return value is, of course, the edited type.

The execution proceeds by reversing the search trace, then walking along it step by step. The
null elements correspond to staying in place. The actual axes we handle with an inner recursion
that breaks each axis into a sequence of left and right steps using cap and mas, as in peek.
When we get to the end of the list, we apply duz to the current type. Thus the replacement is
allowed to depend on the original value of the part of the type being replaced. This capability is
taken advantage of only in cool:ut, discussed above. The tack:ut subsidiary operation is a
convenience function for when the replacement doesn’t depend on the original; it calls take with
duz a constant function and is used in the implementation of %=.

Minor Operations on Types — {repo, wrap}:ut

These operations on types don’t really fit into the other categories.

Repo

The purpose of repo:ut is to take a type and produce a slightly simpler type which is sort of
equivalent to it. The transformation affects only the root of the type data structure being passed
in, so in this way it is similar to hoon desugaring, though the analogy between these two
operations does not go much further. When another operation of the compiler cannot or doesn’t
want to handle a particular case of type, it will very often call repo to have that case translated
into one it does handle. So hints and faces are stripped, core becomes a cell of %noun (yet
another callous treatment of batteries in the type system) and the actual payload type, %noun is
expanded using its definition into fork of atom or cell of nouns (this behavior is taken advantage
of, for example, in crop). Finally, holds are passed to the rest:ut subroutine, which expands them
by calling play. This subroutine is notable because it is the thing that mutates and uses the value
of fan, a set pinned in the context of ut. Fan tracks what holds we’ve seen so far, so if in the
process of playing to expand a hold, we wind up repoing that same hold, we’ll know we’ve
gotten in an infinite loop.

Wrap

You know how you can use ^?, ^&, and ^| to change the variance of a type? This is the function
that implements that.

Name Resolution — find:ut

When you say a.b in Hoon, the compiler needs to find a.b in the subject. The operation
responsible is find:ut, which has signature:

++ ut
|_ sut/type
 :: ..
 ++ find
 |= [way/?(%read %rite %both %free) hyp/wing]
 ^- port

This gate is a thin wrapper around the main logic, which is in fond:ut. Fond has the same
signature, except instead of returning a port, it returns a “pony.” These types are some of the
most confusing and worst laid out in the system. Let’s take a look:

+$ port (each palo (pair type nock)) successful match
+$ palo (pair vein opal) wing trace, match
+$ vein (list (unit axis)) search trace
+$ opal limb match
 $% [%& p/type] leg
 [%| p/axis q/(set [p/type q/foot])] arm
 ==

+$ pony raw match
 $@ ~ void
 %+ each natural/abnormal
 palo arm or leg
 %+ each abnormal
 @ud unmatched
 (pair type nock) synthetic

Pony has two extra not-found cases compared to port, which find zaps out on if it encounters —
the ~ and the [%& %| @ud] —, and one duplicate (!?!) case of (pair type nock), which find
moves to the other case. The palo case of the pony is returned unmolested.

The extra not-found cases are used as intermediate signals when doing recursive tree search.
The ~ case seems to mean “give up entirely.” The [%& %| n] case means “I didn’t find it in this
subtree, but there are n ^s remaining.” So for example, if we’re looking for ‘^^^a,’ and get a [%&
%| 1] when we look in the left subtree, this means we found 2 ‘a’s in the left and should now
proceed to look for ‘^a’. On the other hand, if the left search had returned ~, we would not
attempt a right search.

If we expand out port (recalling that (pair a b) is [p/a q/b] and (each a b) is $%([%& a] [%| b])),
we get:

+$ port
 $% $: %&
 (list (unit axis))
 $% [%& p/type]
 [%| p/axis q/(set [p/type q/foot])]
 == ==
 [%| p/type q/nock]
 ==

There are three cases here, corresponding to the three possible ways a name can resolve:

1.​ To a face (sometimes called a “leg,” encoded %& %&)
2.​ To an arm of a core (encoded %& %|)
3.​ To an alias, as from =* (encoded %|).

Additionally, the first two cases have associated with them a “search trace,” or vein, which if
filtered for nonnulls, reversed, and pegged together, is the axis of the matching face or of the
core within which the matching arm was found. So, for example, [`2 ~ `3] means, start at the
root, go to +3, stay put, go to +2 — +6 in other words.

The body of fond is divided into two parts. The second, starting with the => that pins axe, lon,
and heg, is the code for processing a single limb (the current limb being heg). The first is the
recursion that executes the second for each limb of the wing, in reverse order.

