
Benchmarking AWS 100Gbps network 
Yaroslav Bulatov 
 
 

Summary​ 1 

Background and notation.​ 1 
Algorithm bandwidth​ 1 
Optimal algbw over 100 Gbps network​ 2 
Two machine case​ 3 

Benchmarks​ 4 
nccl-test​ 4 
synthetic PyTorch​ 4 
Imagenet in 18 mins​ 5 
Comparison with on-prem Infiniband​ 6 

Environment setup notes​ 6 
 
 

Summary 
- AWS allreduce of 4GB across 256 GPUs takes ≈1 second, 62% of theoretical max 
- On-prem allreduce efficiency is 94% of theoretical max for 16 machines 
- AWS nccl-test results are 55-67% of theoretical max for 2-32 machines  
- AWS PyTorch results are 50-54% of theoretical max for 2-4 machines 

Background and notation. 

Algorithm bandwidth 
 
Summarizing performance page from nccl-tests 
 
"Algorithm bandwidth is using the most commonly used formula for bandwidth : size (S) 
/ time (t). It is useful to compute how much time any large operation would take by 
simply dividing the size of the operation by the algorithm bandwidth." 
 

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md#algorithm-bandwidth


Since the size of the problem is measured in bytes rather than bits, algbw is also 
reported as GB/s rather than Gbps. 
 
For instance, if we are reducing 4GB tensors and our algorithmic bandwidth is 4 GB/s, 
each operation would take 1 second. 
 

Optimal algbw over 100 Gbps network 
Optimal algorithmic bandwidth across n nodes with link bandwidth B is the following: 
 

 
 
 

 
Theoretical maximum alreduce algbw for 100 Gbps network 

# of machines optimal algbw GB/second 

2 12.5 



4 8.33 

8 7.14 

16 6.67 

24 6.52 

32 6.45 

 
 
If we use hierarchical aggregation and within node aggregation time is negligible, 
algorithm bandwidth is determined by bandwidth between machines. For 100 Gbps 
network, algorithmic bandwidth is between 6.25 (infinite machines) and 12.5 (two 
machines) 
 

Two machine case 
 
For the case of 2 nodes, algorithmic bandwidth is equal to bus bandwidth -- 12.5 
GB/second. The assumption here is that aggregation is done hierarchically and 
within-machine aggregation time is negligible compared to between-machine. For full 
duplex network, the allreduce time is determined solely by the time to send the load one 
way over the network.  
 



 
 
 
 
 

Benchmarks 

nccl-test 
overview here, raw measurements, code 
 
Summary: 
- 8.42 algbw for 2 machines (67% of theoretical max) run 
- 3.53 algbw for 32 machines (55% of theoretical max), run 
 

synthetic PyTorch 
Approximate common transformer architecture, 536 MB over 16 layers, with dummy layers 
instead of real computation to measure network overhead. 
 
measurements, code 
Summary: 
- PyTorch must use mpirun instead of distributed launcher (example) 

https://github.com/NVIDIA/nccl/issues/235#issuecomment-506581242
https://app.wandb.ai/yaroslavvb/nccl_bench
https://github.com/cybertronai/aws-network-benchmarks/blob/efa/nccl_bench2.py
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/7f2viiy2/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/sg4cboyq/logs
https://app.wandb.ai/yaroslavvb/pytorch_bench
https://github.com/cybertronai/aws-network-benchmarks/blob/efa/pytorch_bench.py
https://github.com/cybertronai/imagenet18_/blob/dev/train.py#L385


- using standard ethernet layer gets 1.7-4.4 algbw for 1-16 rings (1 ring, 16 rings) 
using EFA layer: 
- 6.21 algbw over 2 machines (50% of theoretical max), run 
- 4.53 algbw over 4 machines (54% of theoretical max), run 
- maxing out bucket cap increases bandwidth 3.6->4.2 
- single machine step time is 15ms. Two machine step time is 86ms. 
 
 

 
 
 
 

Imagenet in 18 mins 
Objective: Rerun imagenet in 18 minutes code on EFA network 
 
1. Scaled up to 2 GPUs over 2 machines commit 

https://app.wandb.ai/yaroslavvb/pytorch_bench/runs/hj0fqtqw/logs
https://app.wandb.ai/yaroslavvb/pytorch_bench/runs/l4z0hb0a/logs
https://app.wandb.ai/yaroslavvb/pytorch_bench/runs/8rstjj9h?workspace=user-yaroslavvb
https://app.wandb.ai/yaroslavvb/pytorch_bench/runs/h10bgy6s?workspace=user-yaroslavvb
https://github.com/cybertronai/imagenet18
https://github.com/cybertronai/imagenet18_/commit/6a423eb57a90a9c9c19d0043fb07f3120f0d7e6f


2. some issues remain for scaling up further, https://github.com/pytorch/pytorch/issues/23721 
measurements (TODO after issues are solved) 

Comparison with on-prem Infiniband 
 
From sjeaugey@nvidia.com 
The peak for a 100Gb/s NIC is a bus bw of 12.5 GB/s. 
Some numbers on DGX1 with NCCL_IB_HCA=mlx5_0 (to use only one IB EDR NIC) : 
64 GPUs / 8 nodes : 11.87 GB/s 
128 GPUs / 16 nodes : 11.71 GB/s 
 
Translating into algorithmic bandwidth for 4GB transfers 
 
 
Pre 0.3 build: 

machines on-prem AWS ratio 

8 6.78 4.68 0.69 

16 6.25 3.75* 0.60 

* (3.75 algbw for 4GB transfer extrapolated from 3.57 observed on 1GB transfer) 

 
Theoretical maximum alreduce algbw vs on-prem vs AWS for 100 Gbps network. 

# of machines optimal algbw 
GB/second 

from @sjeaugey EFA 0.3 build 

2 12.5  7.71 

4 8.33   

8 7.14 6.78 4.30 

16 6.67 6.25 3.46 

24 6.52   

32 6.45  0.98* 

*run for earlier build observed 3.53, this could be unlucky machine allocation 

Environment setup notes 
 
Follow AWS instruction to build AWS OFI plugin and apply AWS-specific patch. Install Nvidia 
drivers on top of base Amazon Linux AMI. Build PyTorch and NCCL from scratch. 

https://github.com/pytorch/pytorch/issues/23721
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/fcmj56qf/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/q5rgn137/logs
https://github.com/cybertronai/aws-network-benchmarks/blob/95c0bfdc5ce19666d5dd7ab20b2c3cbb01268684/indu_build.sh
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/3ned9udp/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/bjzgy1ke/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/y6ica2li/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/dx9gpm2i/logs
https://app.wandb.ai/yaroslavvb/nccl_bench/runs/sg4cboyq/logs


- https://github.com/cybertronai/aws-network-benchmarks/blob/efa/prepare_efa_image.py 
- https://github.com/cybertronai/aws-network-benchmarks/blob/efa/indu_build.sh 
 

https://github.com/cybertronai/aws-network-benchmarks/blob/efa/prepare_efa_image.py
https://github.com/cybertronai/aws-network-benchmarks/blob/efa/indu_build.sh

	Benchmarking AWS 100Gbps network 
	Summary 
	Background and notation. 
	Algorithm bandwidth 
	Optimal algbw over 100 Gbps network 
	Two machine case 

	Benchmarks 
	nccl-test 
	synthetic PyTorch 
	Imagenet in 18 mins 
	Comparison with on-prem Infiniband 

	Environment setup notes 

