Michael Amendola and Daniel Smith AP Chemistry

Unit 08 -- Acids and Bases

Activities/Assignments: Go to your Google Classroom for direct links to activities and assignments.

Mr.Amendola's google site Google Classroom Playposit Curriculum: Brief Detailed

Unit Learning Objectives/ Goals

By the end of this unit students should be able to:

- Calculate the values of pH and pOH, based on Kw and the concentration of all species present in a neutral solution of water.
- Calculate pH and pOH based on concentrations of all species in a solution of a strong acid or a strong base
- Explain the relationship among pH, pOH, and concentrations of all species in a solution of a monoprotic weak acid or weak base.
- Explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases.
- Explain results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components.
- Explain the relationship between the strength of an acid or base and the structure of the molecule or ion.
- Explain the relationship between the predominant form of a weak acid or base in solution at a given pH and the pKa of the conjugate acid or the pKb of the conjugate base.
- Explain the relationship between the ability of a buffer to stabilize pH and the reactions that occur when an acid or a base is added to a buffered solution.
- Identify the pH of a buffer solution based on the identity and concentrations of the conjugate acid-base pair used to create the buffer.
- Explain the relationship between the buffer capacity of a solution and the relative concentrations of the conjugate acid and conjugate base components of the solution.

Performance Task- what skills are we working towards?

- This unit builds on the content about chemical equilibrium studied in Unit 7. Chemical equilibrium plays an important role in acid-base chemistry and solubility. The proton-exchange reactions of acid-base chemistry are reversible reactions that reach equilibrium quickly, and much of acid-base chemistry can be understood by applying the principles of chemical equilibrium. Most acid-base reactions have either large or small values of K, which means qualitative conclusions regarding equilibrium state can often be drawn without extensive computations. The dissolution of a solid in a solvent can also be understood by applying the principles of chemical equilibrium because it is a reversible reaction that often reaches equilibrium quickly. In the final unit, the equilibrium constant is related to temperature and the difference in Gibbs free energy between the reactants and products.
- Identify an appropriate theory, definition, or mathematical relationship to solve a problem.
- Identify an appropriate theory, definition, or mathematical relationship to solve a problem.
- Explain the relationship between variables
- Calculate, estimate, or predict an unknown quantity from known quantities by selecting and following a logical computational pathway and attending to precision (e.g., performing dimensional analysis and attending to significant figures).
- Identify information presented graphically to solve a problem.
- Support a claim with evidence from representations or models at the particulate level, such as the structure of atoms and/or molecules
- Make observations or collect data from representations of laboratory setups or results, while attending to precision where appropriate.
- Provide reasoning to justify a claim using chemical principles or laws, or using mathematical justification.
- Calculate, estimate, or predict an unknown quantity from known quantities by selecting and following a logical computational pathway and attending to precision (e.g., performing dimensional analysis and attending to significant figures).
- Explain how potential sources of experimental error may affect the experimental results.

Day 1	Objectives
	 Calculate the values of pH and pOH, based on Kw and the concentration of all species present in a neutral solution of water. Calculate pH and pOH based on concentrations of all species in a solution of a strong acid or a strong base
	 Activities Introduction to acid/base reactions. Conjugate acid/base pairs will be reviewed and the pH scale will be discussed. pH calculations will be introduced. Assignments Watch 3 optional AP classroom videos 8.1-8.2 Complete AP formative MCQ 8.1-8.2 on ap classroom Webassign 8.1-3 due Day 3 at 11:59pm
Day 2	 Objectives Explain the relationship among pH, pOH, and concentrations of all species in a solution of a monoprotic weak acid or weak base. Explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases.
	 Activities Direct instruction on pH and pOH for weak acids and bases. Some ICE problems for weak acids and bases will be examined. Students will have some opportunity to practice. Assignments Watch 3 optional AP classroom videos on 8.3 Complete AP formative MCQ 8.3 Webassign 8.1-3 due day 3
Day 3	Objectives • Explain results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components.

	Activities Introduction to acid base titrations. General curve shapes will be discussed. Calculations of pH during strong-strong Acid-Base Titrations will be explored. Assignments Watch 1 Playposit 8.7 Due before class Complete AP formative MCQ 8.7 on ap classroom Due before class Webassign 8.1-3 day 3 at 11:59pm Webassign 8.5 due day 5 at 11:59pm
Day 4	Objectives • Explain results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components. Activities • Explain how buffering occurs during weak acid-weak base titrations. • Continue to practice acid base titrations. Assignments • Optional watch 3 AP classroom 8.4 • Complete AP formative MCQ 8.4 • Webassign 8.5 due day 5 • Webassign 8.6 due day 6 • Webassign 8.4, 8.7-8.10 due day 8 at 11:59pm
Day 5	Activities Q&A 8.4+7-Acid-Base Reactions and Buffers, Titrations continued Assignments Watch 3 Playposits 8.8-10 Due before class Complete AP formative MCQ 8.8-10 Due before class Webassign 8.5 due day 5 at 11:59pm Webassign 8.6 due day 6 Webassign 8.4, 8.7-8.10 due day 8 at 11:59pm
Day 6	Activities • Q&A 8.8-10-Properties of Buffers, Henderson-Hasselbach, Buffer Capacity Assignments

	 Watch 2 Playposits 8.6 Due Wed 3/24 before class Complete AP formative MCQ 8.6 Due before class Webassign 8.6 due today Webassign 8.4, 8.7-8.10 due day 8 at 11:59pm
Day 7	Activities • Q&A 8.6-Molecular Structure of Acids and Bases Assignments • Webassign 8.4, 8.7-8.10 due day 8 at 11:59pm • Webassign 8.6 due day8 at 11:59pm
Day 8	Activities • Q&A Unit 8 Assignments • Webassign 8.4, 8.7-8.10 due day 8 at 11:59pm
Day 9	Activities • Test Unit 8 Assignments • Watch 2 Playposits 9.1-2 Due Wed 3/31 before class • Complete AP formative MCQ 9.1-2 • Webassign 9.X due X 4/X at 11:59pm