
Descriptions of different Optimizations used in
Android

Note: This document is currently out-of-date and does not include the new kid on the block
UBERTC. Based on my current experience UBERTC which is a combination of AOSP and
LInaro but merged to the latest Toolchains components from gnu.org (similar to SaberMod) is
the most stable and fastest toolchain out there. Make sure to stop by and check out
https://github.com/UBERTC/ find uber-manifest and build your own to test out!

Linaro: See http://www.linaro.org/linux-on-arm/

There are several hundreds of developers working on Linaro. Linaro merges changes from
Google and also from GNU.org to optimize toolchains which they use to optimize kernels and
ROMs. They also make changes to AOSP code to allow compiling with either higher GCC
version or for better optimization. Linaro is always months ahead of Google. Example: Google
still uses 4.7.2 while Linaro uses 4.7.4. The differences from 4.7.2 and 4.7.4 are literally
thousands and thousands of lines of code to make toolchains more optimized. This is why
many developers choose the Linaro route. Benchmarks and overall user experience has shown
that linaro does a better job of optimization than Google.

Fun Fact: Ubuntu 14.04 has Linaro 4.8 set as default GCC currently. (There is obviously more
to linaro than many give it credit. I can’t simply be a buzzword if even PCs use it.)

SaberMod: Sources see https://github.com/SaberMod

SaberMod is a smaller scale project manned by only a few developers with the goal to enhance
android in every way possible. Emphasis is placed on keeping things closer to AOSP and not
deviating as far away from stock feel as say Linaro. Developers here use latest GCC merging it
on a weekly basis and continuously patch AOSP patches as Google makes them. SaberMod
developers always build toolchains with the latest Ubuntu internal toolchains and use all of the
GCC optimizations possible to make your ROM fast as ever! SaberMod also makes use of full
system too and all of the -O3, Graphite, and other great GCC flags to make your ROM/Kernel as
efficient as possible. They patch anything and everything android and their hardwork indeed
pays off! Currently SaberMod benchmarks are even higher than Linaro. Don't believe me try
something sabermod built for yourself! You won’t regret it!

Regular Google AOSP Toolchains: see https://android.googlesource.com/toolchain/gcc/

Note: These toolchains are not used as buzzwords this is more for comparison sake

https://github.com/UBERTC/

Currently Google toolchains are anywhere from 9 months to more than a year old. Don't believe
me checkout the sources? Google also seemed to have built its last batch of toolchains on an
older Ubuntu version with GCC 4.6 or maybe GCC 4.7 as the system default toolchain. Even a
rebuild of their current source using the Latest Ubuntu 14.04 with out-of-box GCC 4.8 or
experimental GCC 4.9 increases overall UI responsiveness. Benchmarks are also slightly
improved. This is why it is important to learn to build your own toolchains because Google is
always way behind and you get better performance out of your own toolchains. This is not a
fallacy!!! Give these things a try for yourself and you will feel the difference.

Toolchain Optimization Flags: See https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

-O2 vs. -O3 vs -Ofast: Normally stock kernels come with -O2 as the default optimization level.
Many folks find themselves asking questions like How does this differ from “-O3” or “-Ofast” Is
this a placebo? Read this link https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html about
GCC Optimization options and you’ll find out the differences between -O2, -O3, and -Ofast.
You’ll notice several more optimizations are added from -O2 to -O3. Unfortunately, Google
4.7/4.8 toolchains don’t even support -O3 or -Ofast (At least the arm-eabi toolchains don’t, I
haven’t even wasted my time with arm-androideabi). So they’re not only old but don’t even have
the ability to optimize as much either.

Graphite: See here https://gcc.gnu.org/wiki/Graphite-4.8. Graphite is a framework for high-level
memory optimizations using the polyhedral model.

From the developers about said pelohedral optimization: "To get a real, generic polyhedral
optimizer for Graphite we have chosen the Pluto algorithm. Pluto is an polyhedral optimizer that
uses a single cost function to optimize simultaneously for data locality, parallelism and tileability.
It has shown good results on various kernels and Uday, the original author was employed to
reimplement it in IBM XL. We added an implementation of this algorithm to isl. My recent patch
set enables Graphite to use this new optimizer. Even though the patch is an early draft and
definitely needs tuning to match the results of the original implementation, it is a great starting
point for a real polyhedral optimizer in Graphite." This was over a year ago and it is now fully
implemented.

If you want to learn more: http://gcc.gnu.org/wiki/Graphite-4.8 the first 3 of the 4 things they
wanted to accomplish have been achieved.

Opticharging
​ ​ ​ ​
Custom ROMs in the beginning had limited space to work with which is why Cyanogen
introduced opticharging to the custom release tool in order to shrink apks to fit more apps on

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/wiki/Graphite-4.8
http://gcc.gnu.org/wiki/Graphite-4.8

system partitions of the original android devices. The opticharger script pulls apart apks near the
end of the build and optimizes all pngs drawables found in them. Originally this script used
optipng which is great and there is absolutely no quality loss involved in the png compressions
but more recently I’ve begun using pngquant because it compresses pngs even smaller 30-70%
with usually an average of about 50%. Pngquant does result in a slight loss of quality but
nobody has noticed yet ;) (See more on pngquant here: http://pngquant.org/) (If you are worried
about quality you can always use optipng which compresses without any quality loss themers
usually use this option instead)

Currently, CyanogenMod has abandoned the use of the opticharger but many ROMs still use it
such as SLIM, AOKP, LiquidSmooth, Dirty Unicorns, Carbon, Validus, and many others.
Themers and app developers alike use these techniques as well to make their apps/themes run
more smoothly. Making pngs 70% smaller actually makes the loading time 3 times faster for
these pngs and also saves you RAM. I understand apks aren't all pngs but you'd be surprised
how many junk pngs google has left behind since froyo that serve no purpose but are loaded
into your ram with SystemUI anyways. Thankfully opticharging shrinks all of those undesirables
by usually 50-70% and saves you several MB worth of space and speeds up your SystemUI.
Since you can't unload the system UI this is well worth the effort! My motto always is every little
bit counts :)

Many still argue that high end device don’t need opticharging anymore because they are fast
enough to handle these full-sized pngs. While this is true it still doesn’t change the fact that
opticharing IS still slightly faster and opticharged apks do use less ram. If you don’t believe me
try it for yourself!

http://pngquant.org/

