
To:​ ​ core-libs-dev@openjdk.java.net, concurrency-interest@cs.oswego.edu 
Subject:​ Durations in existing JDK APIs 
 
Hi core-libs-dev and concurrency-interest, 
 
Recently we've been closely studying date/time code inside of Google, and found a surprising 
number of places with time unit mismatches due to overuse of primitives to represent date/time 
concepts. And unlike "off-by-one" errors, these are often "off-by-1000x" or worse...yikes! For 
internal APIs, we're strongly encouraging folks to use the appropriate java.time types (i.e., 
Duration or Instant) because this greatly reduces the occurrence of these problems. 
 
There are several improvements in the JDK we'd like to propose: 
 

1.​ Rename ALL existing unitless primitive method parameters to include their time 
unit. At Google, we have static analysis tools to detect unit mismatches that work based 
on method names, variable names, etc. However, when methods and method 
parameters are unitless, the only way to know what correct units are is to read and 
understand the javadocs (which our tools obviously can't do). Many IDEs also show 
method signatures with parameter names only. There are a handful of examples in the 
JDK that we'd like to update. For example, Object.wait(long timeout) would 
become Object.wait(long timeoutMillis) (or similar). An incomplete list of these 
APIs is included below [1]. 

2.​ Add a java.time overload to some APIs that currently represent date/time 
concepts using primitives. While static analysis helps find errors, ideally people 
wouldn't have to decompose their Duration instances to call these APIs. Adding a 
Duration overload of each of these APIs would remove the need to decompose 
durations, and would encourage developers to plumb durations through more layers of 
their application. The old primitive-accepting APIs would be softly discouraged. Note that 
new default implementations will have to delegate to the existing overloads, and will 
have to choose between losing precision or capping large values at e.g. 292 years (for 
long nanos), but it is hard to imagine this being a serious problem in practice for any of 
them. 

a.​ Note: it's probably not worth adding Duration overloads to legacy APIs (e.g., 
java.util.Timer) or low-level APIs (e.g., java.lang.Object.wait()). 
Determining which APIs make the cut is certainly open to discussion. 

3.​ Add a java.time overload to most APIs that currently accept a <long, TimeUnit> 
pair. Prior to Java8, the recommended advice for accepting a logical duration was to use 
a <long, TimeUnit> pair, as most of java.util.concurrent currently does. Similarly, 
we've seen unit mismatch bugs with these APIs as well (e.g., 
future.get(timeout.toNanos(), MILLISECONDS)). Adding a Duration overload for 
each of these APIs would remove the need to decompose durations, and would 
encourage broader Duration adoption. The old APIs would be softly discouraged. 

mailto:core-libs-dev@openjdk.java.net
mailto:concurrency-interest@cs.oswego.edu
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/locks/LockSupport.html#parkUntil-long-
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/class-use/TimeUnit.html


a.​ Note: a few of the <long, TimeUnit> APIs are already overloaded, which would 
make this a 2x2 explosion of methods. Whether that sort of API explosion is 
acceptable is certainly open for discussion. 

b.​ Note: We've already started adding these overloads in Guava and have plans to 
do so across the board. Caffeine has also added Duration overloads. 

4.​ Add APIs to convert between TimeUnit and Duration. As users transition to the new 
Duration-centric world, these APIs will come in handy. They will also be necessary for 
overload-implementers. We're proposing Duration.of(long, TimeUnit) and 
TimeUnit.convert(Duration). 

 
These recommendations, of course, should also apply to new APIs added in the future. Note 
that we are not expressing an opinion at this time on whether new APIs should or shouldn't also 
have a <long, TimeUnit> overload. 
 
Of course, even comprehensive adoption of Duration in a codebase will not eliminate every 
possible source of unit mismatch bugs. But it would confine them to only the places where 
Durations are created. This would reduce the risk in itself, but also makes it much easier for 
static analyses to detect any remaining bugs. It also lowers the cognitive burden faced by every 
developer interacting with logical durations. 
 
We realize that these are significant changes, so we'd love to hear your thoughts. We'd also be 
happy to work with Martin Buchholz to make these changes. 
 
Thanks, 
 
-Kurt Alfred Kluever 
(on behalf of the Java Core Libraries Team @ Google) 
 
 
Appendix 
 
[1] Unitless primitive parameters 

●​ Probably worth adding a Duration overload 
○​ java.lang.Thread.sleep(long millis) 

○​ java.lang.Thread.sleep(long millis, long nanos) 

■​ Note: this API is particularly weird since it accepts millis and nanos! 
○​ java.lang.Thread.join(long millis) 

○​ java.lang.Thread.join(long millis, long nanos) 

■​ Note: this API is particularly weird since it accepts millis and nanos! 
○​ java.nio.channel.Selector.select(long timeout) 

●​ Probably too low level to worry about adding a java.time overloads 
○​ java.lang.Object.wait(long timeout) 
○​ java.lang.Object.wait(long timeout, long nanos) 

https://github.com/google/guava/issues/2999
https://github.com/google/guava/
https://github.com/ben-manes/caffeine/
https://github.com/ben-manes/caffeine/issues/221


■​ Note: this API is particularly weird since it accepts millis and nanos! 
○​ java.lang.ReferenceQueue.remove(long timeout) 

○​ java.util.concurrent.locks.LockSupport.parkUntil(long deadline) 

■​ Note: this parameter represents milliseconds since epoch (an Instant) 
○​ java.util.concurrent.locks.LockSupport.parkUntil(Object blocker, 

long deadline) 

■​ Note: this parameter represents milliseconds since epoch (an Instant) 
○​ java.util.concurrent.locks.LockSupport.parkNanos(long nanos) 
○​ java.util.concurrent.locks.LockSupport.parkNanos(Object blocker, 

long nanos) 

○​ java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionOb

ject.awaitUntil(Date) 

■​ Note: this would be overloaded with an Instant 
○​ java.util.logging.LogRecord.setMillis(long millis) 

●​ "Legacy" APIs that are probably not worth adding a java.time overloads 
○​ java.util.Timer.schedule(TimerTask task, Date firstTime, long 

period) 
○​ java.util.Timer.schedule(TimerTask task, long delay) 

○​ java.util.Timer.schedule(TimerTask task, Date time) 

○​ java.util.Timer.schedule(TimerTask task, long delay, long period) 
○​ java.util.Timer.scheduleAtFixedRate(TimerTask task, Date 

firstTime, long period) 
○​ java.util.Timer.scheduleAtFixedRate(TimerTask task, long delay, 

long period) 

○​ java.sql.Connection.isValid(int timeout) 

■​ Note: this parameter is in seconds 
○​ java.sql.DriverManager.setLoginTimeout(int seconds) 

■​ Note: this parameter is in seconds 
●​ Networking APIs (perhaps not worth adding a Duration overload?) 

○​ java.net.InetAddress.isReachable(int timeout) 
○​ java.net.InetAddress.isReachable(NetworkInterface netif, int ttl, 

int timeout) 
○​ java.net.URLConnection.setConnectTimeout(int timeout) 

○​ java.net.URLConnection.setReadTimeout(int timeout) 

○​ java.net.Socket.setSoTimeout(int timeout) 
○​ java.net.Socket.connect(SocketAddress endpoint, int timeout) 
○​ java.net.ServerSocket.setSoTimeout(int timeout) 
○​ java.net.DatagramSocket.setSoTimeout(int timeout) 

 


