

C++ Language Tools Team, Google

Dex: efficient symbol index
for Clangd

Summary

This document describes the proposed efficient symbol index implementation for
clangd.

Author: Kirill Bobyrev (kirillbobyrev@gmail.com)
Reviewers: Eric Liu, Sam McCall
Contributors: Alexander Neubeck, Matei-Stefan Chiperi
Created: 2018-07-06
Last updated: 2018-07-17
Link to this document on Google Drive - "Dex: efficient symbol index for Clangd"

Objective
The goal of this project is to build an efficient symbol index for Clangd (Clang-based
C++ Language Server Protocol implementation), which would reduce the latency of
requests such as code completion, symbol lookups, and refactorings. Introduced search
index would replace the existing inefficient implementation which Clangd currently
relies on yielding performance boost. Designed system index must satisfy few
important properties:

https://docs.google.com/document/d/1C-A6PGT6TynyaX4PXyExNMiGmJ2jL1UwV91Kyx11gOI/edit?usp=sharing
https://microsoft.github.io/language-server-protocol/

●​ Symbol lookups should be efficient both in terms of memory consumption and
computational complexity

●​ The index should scale well for projects of a medium size such as LLVM (over
2M LOC) and Chromium (over 18M LOC)

●​ Live changes should be reflected in the index without noticeable performance
overhead

Non-goals
There are certain limitations which are reflected in the design choices described in this
document:

●​ The source code of the examined project is located on the workstation hard
drive, the build also happens on the workstation, both index and clangd instance
do not operate on a distributed environment

●​ The core implementation should replace existing Clangd symbol index by the end
of September, the primary focus right now is on the extensible core functionality
which would support efficient code completion requests handling. Many
interesting features are potential extensions which should be considered later.

Background
One of the most useful Clangd features is real-time code completion. As user types text
in the editor and sends a completion request, Clangd queries known symbols to identify
potential matches while utilizing a number of useful code completion signals such as
symbol name, symbol definition location and scopes in which the symbol is defined.
Symbol names are scored using fuzzy matching which calculates the similarity 1

between matched symbol and what the user actually typed in the editor (query string).
The presented design tries to address the problems of efficient fuzzy search on symbol
name and symbol ranking. Symbol index design aims to reduce the latency of these
operations while preserving code search quality.
Another useful feature of LSP is querying workspace symbols which is very similar to
the Google Code Search problem described in Regular Expression Matching with a
Trigram Index or How Google Code Search Worked” overview by Russ Cox. The
difference is that the query is not based on regular expression search. Google Code
Search can also rank symbols based on file proximity, scopes and other useful
information similarly to what is expected from Clangd search queries. However, the

1 “Note on fuzzy languages” by Lee and Zadeh, “Construction of fuzzy automata from fuzzy regular
expressions” (contains the majority of relevant paper references)

https://microsoft.github.io/language-server-protocol/specification#workspace_symbol
https://swtch.com/~rsc/regexp/regexp4.html
https://arxiv.org/abs/1105.6190
https://arxiv.org/abs/1105.6190

Code Search engine operates on a codebase of a significantly larger size, uses
distributed storage and uses sharding for more efficient operations which introduces
different challenges.

Overview
This section provides a high-level overview of the proposed design without going too
much into the details. Detailed Design goes into more detail about each of the ideas
described below.

Static and incremental indices
During the development process, the majority of the codebase remains unchanged
while small incremental changes are applied. Therefore there is no need to rebuild index
for the most parts of the project, which naturally leads to an idea of building a static and
incremental indices to utilize that idea. Static index contains most of the symbols in the
codebase, has quite large size (and therefore can be stored on hard drive) and is not
rebuilt very often, on the other hand the incremental index keeps track of the changes
happening in real-time (as user types symbols in the active files in the editor of choice)
and is often rebuilt but has relatively small size and can be stored in memory. Such
separation would require additional memory consumption, but the overhead is
neglectable and this would allow latency reduction which is more important. Querying
would involve submitting the request to both static and incremental index and merging
the results afterward.

Hierarchical incremental index
As the user types text in the editor there is a continuous stream of immediate changes
which should be reflected in the symbol index. Rebuilding incremental index after each
small-scale change would be slow and merging such changes into the index would
require additional design decisions and impose more complexity (although is a
reasonable approach and is discussed in Mutable index architecture subsection). A
viable solution for preserving reasonable performance and reducing the complexity
would be introducing two layers of the incremental index: a stable layer for most of the
changes which are not reflected in static symbol index and an instant layer which will
keep track of the live changes in open files.
Similarly to the higher-level request, a query should go through both of the layers and
then the results are merged to produce a response. The instant layer should be much

smaller than the stable layer, therefore as soon as the instant layer grows so that it is no
longer much smaller than the stable layer, the whole incremental index should be rebuilt
emptying the instant layer and merging all existing changes into the stable layer. This
allows core incremental index structure to be immutable. The layer merge trigger should
be handled by Clangd and is not a subject for the symbol index design.

Retrieval and scoring
During the code completion, the user is interested in the symbols having the highest
probability of being the completion items. Clangd uses code completion signals to
score the symbols and rank them accordingly. These signals include fuzzy matching
score, number of references, file proximity, type and so on. Some of these signals are
query specific and computing all of them would require too much computational effort
if every symbol in the index had to be processed.
There are symbols which might have a high final score but very low initial score. Such
symbols are likely not to be referenced many times and hence would be initial ranked
poorly. The proposed solution is to support supplemental retrieval: processing query
would not only involve text-based search, but it would also boost the symbols based on
factors such as file proximity.

Trigram generation 2

The preprocessing in the proposed design is primarily based on Trigram Search Index
which was used in the original Google Code Search implementation to implement
regular expression-based search. Clangd uses a fuzzy-matching scheme rather than
regular expressions as queries, but the implementation is similar.
Each unqualified symbol name from the index is split into trigrams which characterize
that symbol. The idea is that trigrams can also be generated from the query string, and
matching these sets of trigrams approximates the fuzzy-matching rules.
These symbol-specific lists are used to produce the posting lists (also known as
“inverted index”) which are used for the search queries. It is possible to sort the posting
lists by the first-layer search score in order to allow efficient truncation of top k symbols
which will be re-ranked using fuzzy match score and other criteria later to produce the
final result. A very similar design which is a background of the presented one was
validated for the purposes of code completion in internal Google services.

2 Trigram generation techniques are substantially different from those used in the “Google Code Search
overview”. The reason for that is that the current design does not imply regular expression-based search.

Posting list iterators
When the symbol index receives a lookup request with the query string it splits given
string in the trigrams, just as it did with the index symbols before. After that, the query
would process each posting list associated with each trigram of the given string while
merging these posting lists. Since all of the posting lists are sorted it is possible to
efficiently merge them in linear time and use early stopping as soon as top k symbols
are identified. Merging can be viewed as greedily iterating through a number of posting
lists and producing the result in the process.

Detailed design
Index build
The index building process can be separated into the three steps, which are performed
for the following toy example. Let’s assume the project has the following symbols:

●​ class clang::Expr (2000 references)
●​ class clang::Decl (5000 references)
●​ SourceLocation clang::Decl::getLocEnd() (1000 references)
●​ class std::unique_ptr (4000 references)
●​ int Symbols (500 references)
●​ … (<100 references)

The symbols collection stage is managed by Clangd.

Ranking received symbols
Symbols are ranked using given criteria (number of references in this example):

Rank Symbol Name

0 Decl

1 unique_ptr

2 Expr

3 getLocEnd

4 Symbols

… …

Generating trigrams from the symbol names
The next stage processes each symbol name and yields a list of trigram-based tokens.
The trigram generation techniques are covered in-depth later. What is important here is
that the result of this step is a mapping from symbol rank to the list of trigrams:

Rank Trigrams

0 [“dec”, “ecl”]

1 [“uni”, “niq”, “iqu”, “que”, “ptr”, “unp”, “upt”, …]

2 [“exp”, “xpr”]

3 [“get”, “loc”, “end”, “gle”, “glo”, ...]

4 [“sym”, ...]

… …

Given that Clangd can utilize multiple threads and the fact that trigrams generation is
not data-dependent between different symbol names, this can be done in parallel.

Building symbol index
The final step produces an inverted index. The symbol index maps trigram to the
corresponding posting list, which is a sorted sequence of pointers (which are mapped
to rank in this toy example) to the symbols which contain this trigram. The posting lists
construction and population can be done after each trigram and token generation and
therefore there is no need to actually store the result of the previous step anywhere.
The resulting inverted index would look like this:

Trigram Posting list

”dec” [0, …]

”exp” [2, …]

… …

Retrieval and scoring
As discussed before, there are likely to be symbols with a high final score but low initial
rank. This problem is solved by BOOST iterators which can substantially increase the
score of relevant symbols. The complete pipeline of query processing involves the
following steps:

●​ Retrieval based on filtering (intersection and union) and boosting (covered in
later subsection) iterators to increase the score of relevant symbols

●​ Truncation of top N results, typically N would be quite large here (N ~ 10-100k)
●​ Sorting truncated symbols based on the boosted score
●​ Truncating top M symbols (M << N) smaller k
●​ Scoring each symbol from the truncated list using fuzzy matching score, file

proximity score in more computationally expensive manner
●​ Sorting symbols based on the final score
●​ Returning top k results (k << M << N, this would be typically <100 results for

code completions as showing too many results in the completion window is
irrelevant)

Fuzzy search
A fuzzy lookup request operates on the lookup string (among other criteria), which is
given as a field of FuzzyFindRequest. This string is split into the trigrams in the same
manner symbol preprocessing happened during the index build stage.
Let’s assume that the generated trigrams for the query strings are: [“dec”, “ecl”]
(e.g. if the fuzzy lookup request was “Decl”).

Text search filtering
To filter symbols using text search in the first stage index would intersect posting lists
of each trigram generated given the query string. Using the toy example introduced
before, the algorithm would look at the inverted index, which can look like this:

Trigram Posting list

”dec” [0, 7, 10, 40, 55, …]

”exp” [2, …]

”ecl” [0, 7, 15, 30, 55, …]

… …

Now, the algorithm would create an AND Iterator for those posting lists, which
correspond to each trigram found in the query string producing two iterators for the
following posting lists: [0, 7, 10, 40, 55, …] and [0, 7, 15, 30, 55, …].
Assuming the Code Completion Request is to return up to 3 relevant results, these lists
can be merged in an efficient manner using the Iterator interface in an efficient manner.
The result would be [0, 7, 55] since these are the three first common symbols in
both posting lists. Note that these are sorted by rank which makes them the most
valuable candidates for a generic query.

Trigram generation
Trigram generation algorithm is crucial for the lookup quality. For the first iteration, it
might be enough to use relatively simple trigram generation algorithm and improve the
search quality later.

Step 1: Splitting symbol into chunks
During the first step, the query string is split into chunks. The FuzzyFindRequest API
already provides an unqualified query string and stores scopes in a different field.
Hence what’s left to do here is to split the unqualified query string into chunks using the
following rules:

●​ _ is a separator (i.e. unique_ptr should be split into [“unique”, “ptr”])
●​ Lowercase followed by an uppercase is a separator (i.e. MyVariable -> [“My”,

“Variable”], but MAX_CANDIDATE_COUNT->[“MAX”, “CANDIDATE”, “COUNT”])
●​ Sequences of consecutive uppercase letters followed by a lowercase letter: the

last uppercase letter is treated as the beginning of a next chunk. Example:
MySUPERVariable -> [“My”, “SUPER”, “Variable”]

Digits are treated as lowercase letters.

Step 2: Normalizing text
The next step is normalizing the text by casting all chunks into lowercase. This should
be done after the first step is complete, otherwise the second rule wouldn’t be applied
correctly.

Step 3: Trigram generation
The final step produces actual trigrams extracting several classes of trigrams out of the
collected chunks. The rules are based on the observation that these trigrams are 3-char
suffixes of paths through the fuzzy automaton.

●​ Each chunk is processed using the sliding window of three characters and the
resulting views are returned as trigrams. Example: “translation” -> [“tra”,
“ran”, “ans”, “nsl”, …].

●​ The next class of trigrams consists of front chunk letters (skipping more than 1
chunk is not allowed). Example: [“translation”, ”unit”, ”decl”] -> ”tud”.

●​ Another class of chunks consists of a character from the chunk and two starting
characters of any chunk which comes later (same as in two previous classes, the
next chunk should be either next or the one after next). Example: [“dec”,
“hex”, “oct”] -> [“dhe”, “ehe”, “che”, “doc”, “eoc”, “coc”]

●​ The last class of chunks consists of two consecutive characters from a chunk
and the first character of the next chunk or the chunk after next. Example:
[“dec”, “hex”, “oct”] -> [“deh”, “ech”, “deo”, “eco”]

Corner cases: handling short requests
Some queries are shorter than 3 symbols (e.g. when triggering code completion after
the first/second symbol) and these should be correctly addressed, too. There are few
possible solutions to this problem and they are briefly described below.
In this section, the algorithm is dealing with an incomplete trigram query, e.g. ? or ??
where ? represents any character from the alphabet of possible identifier symbols at
that position.

Fuzzy matching each entry
Probably the most straightforward approach is just scoring the symbols via applying
fuzzy matching by iterating through the symbols sorted by priority .

Generating incomplete trigrams
This corner-case can also be addressed by adding unigrams and bigrams to the symbol
index.

Posting list Iterators

AND iterator
AND iterator manages intersection of posting lists. min(scores) is applied to produce
the final score in the merged list.
An example use case where AND iterator should be used was covered in the subsection
about symbol filtering.
In general, both AND and OR iterators would act in a similar manner. AND iterator should
maintain the value of a lowest rank which is pointed by any of the processed iterators.

Algorithm description
Before the algorithm starts, each iterator is assigned to the begin() of each posting list
and the lowest rank is chosen among the front ranks of each posting list. The algorithm
consecutively advances each iterator to the lowest rank item. If it is missing from the
corresponding posting list then lowest rank is updated and each iterator from the
merging list is being advanced to the new lowest rank again. If all of the posting lists
happen to contain that item, it should be added to the result. The process resumes after
one iterator is calling advance() to move to the next item. As soon as any iterator
reaches the end or resulting posting list is populated with enough items, the execution
stops.
This would be trivial to maintain and update lowest rank in O(1) time.

Example
It would be easier to understand how the algorithm works using a small example to
illustrate the description given before.

 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

The initial set of iterators points to the first item of each posting list and the highest is
chosen among these initial ranks (here it happens to be 2).

Lowest rank: 2 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

Each element which is pointed to by the corresponding posting list iterator, is
highlighted in blue. The first step advances the iterator for posting list #0 to 2 by
applying binary search to the range [3, END]:

Lowest rank: 3 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

Since there is no 2 present in the posting list #0, the iterator advances to the closest
higher value which is 3 in this case. Lowest rank is also updated since last iterator
advanced past the previous lowest rank. Now, each iterator is being advanced to 3 (AND
iterator uses advanceTo(3) on all of its children).
Posting list #1 iterator is advanced to 3 and happens to get to 7:

Lowest rank: 7 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

The lowest rank is updated once again. The process of moving each iterator to the
lowest rank should start from scratch: iterators for posting lists #0 and #2 are moved to
7 without updating the lowest rank value:

Lowest rank: 7 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

All of the iterators are pointing to the item with the same rank. Hence, it is present in all
of the lists and added to the result. After that the posting list iterator #0 calls
advance() which moves it to the END. Hence, there are no more items present in all
posting lists and the process of merging lists is finished.

 Item ranks

Posting list #0 0 3 7 END

Posting list #1 2 7 10 42

Posting list #2 1 4 7 42

OR iterator
OR iterator manages the union of the tokens in multiple posting lists and assigns a
score of max(scores) where scores belong to the matched token in each processed
posting list.
This iterator can be used to filter the scope of a symbol. For example, if the code
completion query is triggered after typing clang::clangd::Ind the query would return
symbols from clang::clangd OR clang:: OR :: (global) scopes. Similar to proximity
paths, closest scopes can be upranked using boosting iterator.
Unlike AND iterator in the previous example, the inverted index used by OR iterator in
such query maps scope (instead of trigrams) to the corresponding symbols.
Each step of OR iterator union process consists of

●​ Picking an iterator of the highest rank
●​ Adding the item it points to the resulting list
●​ Using advance() to proceed to the next posting list item

The choice of a data structure which would allow efficient updates of the highest rank
with its iterator is obviously a priority queue with the Iteration Indices being keys and
iterators as the values. As soon as the iterator reaches the end of its posting list, it is
removed from the priority queue.

Boosting iterator
Boosting iterator operates on a single posting list and multiplies the score of each
matched item by a given factor. It is useful for upranking symbols matching certain
criteria, e.g. when symbol is defined in the same directory with opened files its score
might be boosted by a factor of 3, if it is defined one directory below or above it can be
boosted by a factor of 2 and so on.

Supplemental retrieval iterator
This kind of iterators is used to limit the number of returned postings. As soon as the
limit is reached the iterator advances to the end. Only those tokens which matched the
full iterator trees are counted.

Query trees
A natural way of representing multi-level search queries is to build an iterator tree which

is to be “evaluated” bottom-up. Here’s an example of symbol lookup based on
supplemental retrieval which boosts symbols based on file proximity. Similar techniques
can be applied to retrieve symbols from nearby scopes in case user mistakenly
specified a wrong one.
Supposing that this is a code completion query triggered after user typed clang::Decl
and the current file is in clangd/Index directory, this is what a retrieval query might
look like:

Abstraction interfaces
The following code snippet contains interfaces for the most substantial pieces of the
symbol index core.

// Posting list contains a vector of (symbol, score) pairs sorted by a pre-computed

// metrics such as references count. It allows efficient operations via iterator

// interface which operates on a number of posting lists and produces a result of

// the query.

//

// NOTE: Static and incremental indices can have different storage type and

// different implementation.

class PostingList {

public:

 // Posting list entries contain the information about a specific item: its rank

 // and the score which will be used later in the filtering stage.

 struct Entry {

 const unsigned Rank;

 double Score;

 };

private:

 Container Entries;

};

// Posting list iterator implements the iterator interface over the PostingList

// instance.

class Iterator {

public:

 void advance();

 void advanceTo(unsigned Rank);

};

// Interface for the query tree evaluation. Given a specific query, it produces the

// final posting list.

class RetrievalSession {

public:

 PostingList retrieveSymbols();

 // Number of items truncated after the first retrieval stage (filtering via

 // iterator tree).

 Unsigned getBoostedSymbolCount();

 // Number of items which are scored using fuzzy matching and other techniques.

 unsigned getScoredSymbolsCount();

 // Final symbols count, i.e. the PostingList.size() returned by retrieveSymbols()

 unsigned getReturnedSymbolCount();

};

// Hashable clangd::Symbol Token, which represents a searching query criteria

// primitive. The following items are examples of tokens:

//

// * Symbol name for trigram-based search.

// * Proximity path primitives, e.g. "symbol is defined in directory

// $HOME/dev/llvm or its prefix".

// * Scope primitives, e.g. "symbol belongs to namespace foo::bar or its prefix".

// * If the symbol represents a variable, token can be its type such as int,

// clang::Decl, …

// * For a symbol representing a function, this can be the return type.

//

// Tokens can be used to perform more sophisticated search queries by constructing

// complex iterator trees.

class Token {

public:

 // Returns precomputed hash.

 size_t operator()(const Token &T) const;

};

// Specifies what should be searched (e.g. path, scope, symbol name) and how (using

// prefix/fuzzy search or exact match).

class QueryAtom {

public:

 enum class MatchType : char {

 ExactMatch,

 FuzzyMatchSearch,

 PrefixMatch,

 };

 Type getType();

 llvm::Option<llvm::StringRef> getSymbolName();

 llvm::Option<llvm::StringRef> getScope();

 llvm::Option<llvm::StringRef> getPath();

};

class InvertedIndex {

private:

 llvm::DenseMap<Token, PostingList> PostingLists;

};

struct FuzzyFindRequest {

 std::string UnqualifiedName;

 // A mechanism for upranking certain symbols: e.g. based on user history it is

 // likely that symbol is defined in a specific file.

 std::vector<std::pair<Token, double>> BoostTokens;

};

Caveats and/or [rejected] alternatives

Mutable index architecture
The designed approach requires the symbol index to be an immutable structure.
Because of that, merging two Indices would basically mean rebuilding an index from
scratch given symbols from each Index. The alternative approach would be to allow
Index structure mutability which would give the opportunity to merge, delete and modify
symbols in the given index. While this is a tempting perspective, this would most likely

lead to inefficiency and higher latency in the lookup queries since the data structures
used before would not be feasible for the efficient mutable operations. Our priority, in
this case would, be faster lookups and hence the mutable architecture is a rejected
alternative. If it is, in fact, possible to allow mutability without sacrificing core
functionality performance this alternative would be reconsidered.

Current implementation
Existing symbol index implementation stores symbols in std::vector which is iterated
whenever a lookup request is received and applies fuzzy matching to the candidates.
Both static and incremental indices have the same interface, the results of queries to
both of them are merged after each request. The incremental index is rebuilt each time
opened file is changed.
Such implementation is not inefficient for several reasons, one which is that rebuilding
incremental index too often is costly. Instead, the proposed solution would address
minimal changes in the front layer of the incremental index, only rebuilding the index
(merging both layers) once in a while.

Alternative approaches
There are several data structures used to store indices such as the suffix tree, inverted
index, citation index, n-gram index and document-term matrix. To satisfy the desired
properties of the design requirements, the proposed solution utilizes n-gram index and
posting lists as none of the mentioned alternatives seem to improve the performance of
the designed system.

Testing plan
Given the incremental nature of the proposed project implementation, it would be great
to track the performance of the index implementation by examining benchmarks of the
core symbol index functionality. While it might be very time-consuming to maintain a
comprehensive benchmark setup covering all range of possible caveats and corner
cases, it is still worth introducing a relatively simple benchmark infrastructure to get
enough information about the performance evolution to make sure it is improving over
time. Benchmarking in general is rather difficult and it is probably most important to
track the relative difference between different revisions/versions. LLVM test-suite
repository contains a set of benchmarks, but these are meant for the LLVM/Clang
internals and hence this might not be a suitable place for Clangd benchmarks, which

https://llvm.org/docs/TestingGuide.html#test-suite-overview

might be located in clang-tools-extra repository in the end.

Work estimates
The main goal of this project is to complete the basic functionality covered in this
design document and push it to the upstream while replacing current symbol index
implementation by the end of September, 2018.

Potential extensions
This section introduces a set of features, which are substantial for reliable symbol index
functionality but are not a priority yet. With that in mind, the design decisions should
allow these extensions, but the initial implementation is unlikely to have any of them.

Misspelled queries
Having relevant code completion results despite having misspelled the beginning of
symbol name would significantly improve the user experience. This is likely to have a
positive influence on some of the refactorings (e.g. variable name suggestions) which
are expected to be eventually available in Clangd.
A possible approach would be to swap each pair of characters while generating
additional queries and to merge results of all resulting quires. That would potentially
generate much noise and affect latency, but it is probably a viable solution.

Index compression
Symbol index can potentially occupy quite a lot of memory and therefore it might be
beneficial to use any kind of compression to reduce that. The “Information Retrieval”
book has a whole section dedicated to the index compression, it might be worth
exploring the ideas presented there. An example of a rather simple idea is that posting
lists can be very dense and in order to reduce memory usage it might be worth using
delta encoding or any other compression scheme.
However, it might be not worth the effort if the index proves to be relatively compact.
Right now, the experimental global symbol index tool produces a 300 Mb YAML file for
the LLVM and Clang.

https://nlp.stanford.edu/IR-book/html/htmledition/index-compression-1.html

Generate and update symbol index during build process
Static Index generation is quite long (takes approximately an hour to build LLVM and
Clang index on a rather fast machine with 11 cores and 64 Gb RAM). Apple recently
uploaded an index-while-building patch which generates static symbol index as a part of
the project build. This is used in XCode 9 but is the patch did not land yet and is under
an ongoing review. Since static index generation takes so long, it would be nice to both
trigger its generation upon build runs and to reuse information collected by Clang
compiler in the build process to effectively build static symbol index. One of the
difficulties is that symbols have to be sorted by some priority (such as the number of
references) and not having them in one go makes such process more complicated. It is
also important to mention that the discovery of new content via index-while-build is
similar to that for the incremental index but with a different rate. The update
mechanism can be similar in both cases.
This is potentially a collaborative effort with the index-while-building developers.

Appendix

More reading
●​ Regular Expression Matching with a Trigram Index or How Google Code Search

Worked, 2012 Russ Cox
●​ google/codesearch - original Go implementation of gsearch on Github
●​ Search Engine Indexing page on Wikipedia
●​ Information Retrieval Book by Chris Manning (Chapters 4 covers Search Index

Construction and explains Dynamic Indices in Section 4.5, Chapter 5 introduces
Index Compression)

●​ Clangd documentation
●​ Microsoft Language Server Protocol (LSP) website with specification
●​ index-while-building patch in LLVM by Apple folks and the corresponding design

document for index-while-building in XCode 9
●​ “Construction of fuzzy automata from fuzzy regular expressions”, 2011

Aleksandar Stamenković and Miroslav Ćirić

https://swtch.com/~rsc/regexp/regexp4.html
https://swtch.com/~rsc/regexp/regexp4.html
https://swtch.com/~rsc/
https://github.com/google/codesearch
https://en.wikipedia.org/wiki/Search_engine_indexing
https://nlp.stanford.edu/IR-book/
https://clang.llvm.org/extra/clangd.html
https://microsoft.github.io/language-server-protocol/
https://reviews.llvm.org/D39050
https://docs.google.com/document/d/1cH2sTpgSnJZCkZtJl1aY-rzy4uGPcrI-6RrUpdATO2Q/edit
https://docs.google.com/document/d/1cH2sTpgSnJZCkZtJl1aY-rzy4uGPcrI-6RrUpdATO2Q/edit
http://arxiv.org/abs/1105.6190v1

	Dex: efficient symbol index for Clangd
	Objective
	Non-goals

	Background
	Overview
	Static and incremental indices
	Hierarchical incremental index
	Retrieval and scoring
	Trigram generation
	Posting list iterators

	Detailed design
	Index build
	Ranking received symbols
	Generating trigrams from the symbol names
	Building symbol index

	Retrieval and scoring
	Fuzzy search
	Text search filtering

	Trigram generation
	Step 1: Splitting symbol into chunks
	Step 2: Normalizing text
	Step 3: Trigram generation
	Corner cases: handling short requests
	Fuzzy matching each entry
	Generating incomplete trigrams

	Posting list Iterators
	AND iterator
	Algorithm description
	Example

	OR iterator
	Boosting iterator
	Supplemental retrieval iterator
	Query trees

	Abstraction interfaces

	Caveats and/or [rejected] alternatives
	Mutable index architecture
	Current implementation
	Alternative approaches

	Testing plan
	Work estimates
	Potential extensions
	Misspelled queries
	Index compression
	Generate and update symbol index during build process

	Appendix
	More reading

