
Writing functions

Pyret

fun pen-cost(num-pens :: Number, msg :: String) -> Number:

 doc: "Computes the cost of order num-pens number of pens with msg on them"

 num-pens * (0.25 + (string-length(msg) * 0.02))

where-examples go here

end

Python

Notes (how to run a file, how to interact with a file, calling functions):

If-expressions

Pyret

fun add-shipping-cost(order-price :: Number) -> Number:

 doc: ```Adds correct shipping cost to order-price.```

 if order-price <= 0:

 0

 else if order-price <= 12:

 order-price + 4

 else:

 order-price + 6

 end

where-examples go here

end

Python

Testing

Notes on setting up testing:

Pyret
where:

 pen-cost(4, "") is 4 * 0.25

 pen-cost(1, "hi") is 0.29

 pen-cost(2, "smile") is 0.70

end

where:

 add-shipping-cost(0) is 0

 add-shipping-cost(2) is 6

 add-shipping-cost(12) is 16

 add-shipping-cost(20) is 26

end

Python

fun pen-cost(num-pens :: Number, msg :: String) -> Number:

doc: "Computes the cost of order num-pens number of pens with msg on them"

num-pens * (0.25 + (string-length(msg) * 0.02))

where:

pen-cost(4, "") is 4 * 0.25

pen-cost(1, "hi") is 0.29

pen-cost(2, "smile") is 0.70

end

fun add-shipping-cost(order-price :: Number) -> Number:

doc: ```Adds correct shipping cost to order-price

If the order is no more than $12, add $4 shipping

Otherwise, add $6 shipping

Produce 0 if order-price is less than or equal to 0.```

if order-price <= 0:

0

else if order-price <= 12:

order-price + 4

else:

order-price + 6

end

where:

add-shipping-cost(0) is 0

add-shipping-cost(2) is 6

add-shipping-cost(12) is 16

add-shipping-cost(20) is 26

end

 Interacting Using result in subsequent computation Running

def add1_a(n):

 print(n + 1)

def add1_b(n):

 return n + 1

def add1_c(n):

 n + 1

if-expressions and return

Pyret

fun add-1-if-pos(n :: Number) -> Number:

 if n > 0:

 n + 1

 else:

 n

 end

end

Python

Lists/Strings

Pyret

words = [list: "cat", "potato", "yarn", "noodle", "fern"]

length(words)

member(words, "cat") # true

member(words, "dog") # false

string-contains(“cat”, “at”)

filter(lam(w): string-contains(w, “a”) end, words)

Python

Summing a list

Order of computation in Pyret

num-lst = [list: 3, 7, 5]

sum(num-lst) will be
3 + sum([list: 7, 5])
 7 + sum([list: 5])
 5 + sum([list:])
 0

Order of computation in Python

Code in Python

