
GMIN moves revamp
Working document

Contents

Introduction
The problems
How can we address this?

1. Move all step taking routines to a MOVES module (moves.90)
2. Develop a new flexible framework for steptaking

Progress (17/04/2014)
Coding guidelines
To-do list

Chris
Kyle

Introduction

This is the working document for discussion of revamping GMIN’s step taking routines and
implementation. It is very much a work in progress and focusses on two aspects - the
development of a new MOVES module (GMIN/source/moves.f90) and an associated
mechanism for calling these moves in a flexible way.

The group wiki pages for the MOVES and SANITY modules can be found here:

MOVES: http://goo.gl/uOvRsZ

SANITY: http://goo.gl/Hy0hVj

Chris’ initial presentation from AVT on Tuesday 15th of April discussing the need for these
changes can be found here: http://goo.gl/3Vlgzc

The problems

●​ Moves are often potential specific - more than they need to be
●​ The code is very fragmented - we have moves everywhere
●​ As a result - the logical flow of loops in mc.F is tortuous to decipher
●​ It is hard or impossible to produce move sequences or move blocks
●​ There is a lot of repeated code - how many times have we coded cartesian moves?!

How can we address this?

We need a major rethink as to how GMIN changes the coordinates before quenching - while
retaining backwards compatibility as much as possible. At the moment, the plan is to:

http://goo.gl/uOvRsZ
http://goo.gl/Hy0hVj
http://goo.gl/3Vlgzc

1. Move all step taking routines to a MOVES module (moves.90)

We need to decide if this is to also include ‘driver’ routines - for example group rotation steps
use two subroutines GROUPROTSTEP (the driver routine, selects which groups to be
rotated during each step and the rotation angle) and GROUPROTATION (performs the
actual rotation given the atoms in the group).

2. Develop a new flexible framework for steptaking

We need a new way to specify which moves we’d like to apply to the system when during a
GMIN run. We currently rely on potential specific implementations (i.e. Birgit’s CHARMM
moves using the CHMOVE keyword...which is undocumented) or people coding moves in a
sensible way so that some can work together (e.g. in AMBER, we do MD steps first, then
dihedral/group rotations and finally cartesian displacements). There are many cases where
more flexibility would be hugely valuable - and at the moment people just hard code in
special cases which makes the problem worse!

Any new framework needs to include the ability to:

●​ Perform a (repeated?) sequence of steps
●​ Construct ‘groups’ or ‘blocks’ of steps to be taken at the same time
●​ Apply steps to a subset of atoms/particles only
●​ Support MPI (BHPT) runs - allowing different steps for each replica
●​ Allow periodic/frequency based steps
●​ Strictly define the order in which steps are taken
●​ Test steps!
●​ Prevent inappropriate steps from being taken

Please add anything you think is missing to the above wish list!

Progress (17/04/2014)

This project is currently in the early planning and implementation stage:

●​ MOVES exists (moves.f90), but currently only contains three step taking routines:
○​ CARTESIAN_SPHERE
○​ CARTESIAN_SIMPLE
○​ ROTATION_ABOUT_AXIS (tested and it replicates group rotation! :D)

●​ The NEWMOVES keyword is currently required in data to bypass all old step taking
routines in mc.F

●​ Steps need to be manually commented/uncommented to use them in mc.F - search
for NEWMOVEST.

Coding guidelines

As discussed on the wiki page, the moves in the new module need to conform to the
following guidelines to keep us on the straight and narrow:

●​ code blocks must be indented in a manner consistent with the rest of the module (3
spaces)

●​ variable names must be understandable e.g. MAX_STEP rather than S
●​ avoid using GOTOs!
●​ all subroutines must be fully commented (in English)
●​ all required and optional arguments must be fully explained
●​ every move routine must have an optional final argument ATOM_LIST to apply the

move to a subset of atoms. See the example on the wiki page
●​ only utility modules (e.g. VEC3) may be USE'd from MOVES. This does NOT include

COMMONS
●​ no potential specific information may be required by any routine in MOVES - this

should be dealt with in the driver routine
●​ move routines should NOT print anything outside of STOP messages - printing

should come from the appropriate driver routines
●​ where appropriate, sanity checks (GMIN SANITY module) and tests (GMIN TESTS

module) should be included in move routines

Additional thoughts:

●​ conditional moves (e.g. restart)
●​ sanity check moves (e.g. moving two atoms apart if they underwent cold fusion)
●​ definable blocks of moves
●​ think about changing step size based on acceptance ratio and other quantities we

can measure
●​ functional form for step size

Please add anything you think is missing to the above list!

To-do list

Chris

●​ Add rigid translation moves to the MOVES module
●​ Make a test driver routine for AMBER - requires some planning

Kyle

●​ Finalise move file input format (preferably something standard)
●​ Convert Python parser into Fortran (should be fun!)

	
	Introduction
	The problems
	How can we address this?
	1. Move all step taking routines to a MOVES module (moves.90)
	2. Develop a new flexible framework for steptaking

	Progress (17/04/2014)
	Coding guidelines
	To-do list
	Chris
	Kyle
	

