
Add cache and die affinity

Author Owning-sig Date Status

ranchochen@tencent.com sig-node 2021.5.1 Draft

Summary
Caches are not considered in current Kubernetes cpu-manager, in some architectures, each
socket/package owns more than one L3 cache, containers may encounter performance
degradation for L3 cache interference and lower hit rate.

We propose to support for L3 cache affinity during container cpu allocation. While in the
same package/socket, try to use cpus sharing L3 cache for container demand but not just
choose from all cpus in the package/socket.

Motivation
Kubernetes cpu-manager tries to allocate cpus in the same core, socket/package, gaining
better performance. In traditional architecture, L3 cache is shared between the whole socket,
current cpus allocator works well.

However, the allocation algorithm may encounter problem in processors like `2nd Gen AMD
EPYC™`, each `ccx`(a term used by AMD to describe a cluster of physical cores along with
the shared L3 cache) owns its L3 cache, more than one L3 cache exists in a
socket/package, we call L3 caches like this as uncore-cache all this design). Depending on
current cpu allocation may face uncore-cache interference. For example, 4 cores with HT in
ccx, a container demand for 8 cpus may not get the whole ccx, but get some cpus in other
ccx(see figure below), container A and B may affect each other while the other flush
uncore-cache. In our opinion, container's cpu locality should be considered.

Goals

Support uncore-cache affinity in cpu allocation in architecture.

Future work
Cross-die may also decrease process performance. We will add die affinity future, and
corresponding cpu assignment algorithm implemetation.

Proposal
In order to make a decision to allocate cpu with uncore-cache affinity, we should be
aware of the uncore-cache information in kubelet, current kubelet gets cpu topology
with cadvisor, which does not support the related details. So, we add cache id and
uncore-cache items to cadvisor(all merged).

● Add cache id to cadvisor
In cadvisor PR(https://github.com/google/cadvisor/pull/2847/), use
/sys/devices/system/cpu/cpu*/cache/index3/id to get L3 cache id of current
cpu, and store it as cpu topology.

● Add uncore cache to cadvisor
In cadvisor PR(https://github.com/google/cadvisor/pull/2849), add L3 cache
not shared among the whole socket(uncore cache) to core info in cpu
topology. And we can get core->uncore-cache mappings.

User Stories (Optional)
Before change, when kubelet allocates cpus for containers, uncore-cache is not
considered, and may get cpus across caches even there're free cpus shared
uncore-caches.
Also, we make a bench with stream2 DAXPY, as we can see, cross ccx(cross
uncore-cache) gets lower bandwidth.

https://github.com/google/cadvisor/pull/2847/
https://github.com/google/cadvisor/pull/2849

When workload is memory sensitive, this feature can improve memory bandwidth
significantly(20% above).

Risks and Mitigations
● Currently no risks was found.
● Feature is enbled by a gate - a new kube feature with default false, potential

risk effects could be limited.

Drawbacks
L3 cache affinity will not always get a better performance, however, we do think, workload in
containers should not influence other containers. Decreasing L3 cache-miss in individual
containers should be taken into consideration during programming workload or use other L3
cache allocation and isolation technology.

Design Details
● Feature Gate

○ Add CPUManagerLLCAlign to kubelet's feature-gates to
enable(true)/disable(false) the feature.

○ Also, more than one l3 cache should exist in a single socket/package.
● General Design

○ Logic Elaboration

Try to allocate cpus sharing the same cache if demand is larger than one
core. Add L3 cache affinity before tring core affinity best-fit.
If we cannot find llc-satisfied cpus, continue the original process(find available
cores).

○ feature-gates CPUManagerLLCAlign

CPUManagerLLCAlign should set false in defaultKubernetesFeatureGates.
And make a judge in takeByTopology, enable->(do l3 cache affinity
best-fit),disable->(skip).

● Data Structure Design

pkg/kubelet/cm/cpumanager/topology/topology.go

type CPUTopology struct {

NumCPUs int

NumCores int

NumSockets int

NumUnCoreCaches int

CPUDetails CPUDetails

}

// CPUInfo contains the socket and core IDs associated with a CPU.

type CPUInfo struct {

SocketID int

CoreID int

UnCoreCacheID int

}

● Core logic in cpu assignment

pkg/kubelet/cm/cpumanager/cpu_assignment.go

// Return free uncore cache IDs as a slice sorted by:

// - the number of whole available cores share the same uncore

cache, ascending

// - socket ID, ascending

// - uncore cache id, ascending

func (a *cpuAccumulator) freeUncoreCacheGroups() []int {

uncoreCacheIDs := a.details.UncoreCaches().ToSlice()

if len(uncoreCacheIDs) == 0 {

return uncoreCacheIDs

}

sort.Slice(uncoreCacheIDs,

func(i, j int) bool {

iUncoreCache := uncoreCacheIDs[i]

jUncoreCache := uncoreCacheIDs[j]

iCPUsInUncoreCache :=

a.details.CPUsInUncoreCaches(iUncoreCache).Filter(a.isUncoreCacheG

roupFree)

jCPUsInUncoreCache :=

a.details.CPUsInUncoreCaches(jUncoreCache).Filter(a.isUncoreCacheG

roupFree)

if iCPUsInUncoreCache.IsEmpty() ||

jCPUsInUncoreCache.IsEmpty() {

return iCPUsInUncoreCache.Size() <

jCPUsInUncoreCache.Size() || iUncoreCache < jUncoreCache

} else {

iSocketID :=

a.details[iCPUsInUncoreCache.ToSlice()[0]].SocketID

jSocketID :=

a.details[jCPUsInUncoreCache.ToSlice()[0]].SocketID

return iCPUsInUncoreCache.Size() <

jCPUsInUncoreCache.Size() || iSocketID < jSocketID || iUncoreCache

< jUncoreCache

}

})

return uncoreCacheIDs

}

func isUncoreCacheAlignEnabled() {

return

utilfeature.DefaultFeatureGate.Enabled(kubefeatures.CPUManagerUnco

reCacheAlign)

}

Test Plan
Test should work on two scenarios:

● For AMD rome/milan or other architectures with more than one L3 cache in a
socket, cpu allocation for a container should always try to get all demand cpus
sharing one L3 cache. Check containers’ cpuset.cpus for verification.

● For other architectures, cpu allocation should be the same as before.

Dependencies

High version cadvisor is in need, in which cache id and uncore cache info stored in
cpu topology.

