Matière : sciences physiques Niveau: 1 APIC

Correction d'exercice 1

Je convertis:

$$12 Kg = 12 000g$$

$$560 g = 560 000 mg$$
 $0.75 dag = 7500 mg$

$$1.2g = 0.0012 Kg$$

$$20 t = 20 000 Kg$$

$$0.75 \, dag = 7500 \, mg$$

$$1 g = 0.001 Kg$$

$$200 mg = 0.2 g$$

$$4.5 Kg = 45 hg$$

$$340 \ mg = 0.34 \ g$$

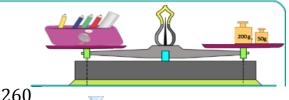
Correction d'exercice 2

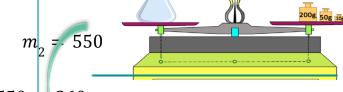
1) La masse **m'** de la trousse est :

On a:
$$m' = 200 + 50 \ Donc$$
: $m' = 250 \ g$

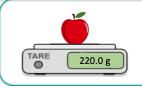
2) La masse m_1 du récipient vide est :

On a:
$$m_1 = 200 + 50 + 10 \ Donc$$
: $m_1 = 260$


3) La masse m_2 du récipient + le liquide est :


On a:
$$m_2 = 300 + 200 + 50$$
 Donc:

La masse m du liquide est : 4)


On a:
$$m = m_2 - m_1 A.N$$
: = 550 - 260

Donc: m = 290 g

Correction d'exercice 3

- 1) La masse m_1 de la pomme est : $m_1 = 220 g$
- La masse de la banane est :

2) La masse
$$m_2$$
 de la poire est :
On a : $m_2 = 360 - m_1$ A.N : La masse de la banane est
On a : A.N : Donc :
= 360 - 220Donc : $m_2 = 140 \ g$

Correction d'exercice 4

Soit la masse m = 24g d'huile occupant un volume $V = 30 cm^3$.

1) La masse volumique d'huile est :

On a:
$$\rho = \frac{m}{V} A.N$$
: $= \frac{24}{30} Donc : \rho = 0.8 g/cm^3$

2) La masse d'un litre d'huile est : · Le volume de d'huile est :

On a: $\rho = \frac{m}{V} \text{Alors}$: $m = V \times \text{pet On a}$: $V = 1L = 1000 \text{ cm}^3 \text{Alors}$:

 $m = 1000 \times 0.8 \, \text{Donc} : m = 800g$

Correction d'exercice 5

Corps	A	В	С
Masse (g)	320	$m_{_B}$	420
Volume (1)	64	60	V_{C}
$\rho(g/L)$	$\rho_{_A}$	7.8	2.7

- * Je complète le tableau ci-contre :
- 1) Calculons la masse volumique ρ_{A} :

On a: $\rho_A = \frac{m_A}{V_A} A.N$: $= \frac{320}{64} Donc$: $\rho_A = 5 g/L$

2) Calculons la masse m_{p} :

On a: $\rho_B = \frac{m_B}{V_B} \text{Alors}$: $m_B = V_B \times \rho_B \text{A.Non a:} m_B = 107 \text{s}. \times 60 \text{ Pronc} = 100 \text{ m}$

Correction d'exercice 6

On a mesuré la masse d'un même volume V=200~mL de trois corps différents A, B et C. On a trouvé les masses suivantes : $m_A=200~g$; $m_B=160~g$ et $m_C=540~mg=0.45~g$.

1) Calculons la masse volumique des trois corps A, B et C:

On a:
$$\rho_A = \frac{m_A}{V_A} A.N$$
: On a: $\rho_B = \frac{m_B}{V_B} A.N$: On a: $\rho_C = \frac{m_C}{V_C} A.N$: $\rho_A = \frac{200}{200} Donc$: $\rho_A = \frac{160}{200} Donc$: $\rho_B = \frac{160}{200} Donc$: $\rho_B = \frac{0.540}{200} Donc$: $\rho_C = \frac{0.540}{200} Donc$: $\rho_C = \frac{0.00225}{200} g/mL$

2) Je classe ces corps en donnant lequel va flotter sur l'autre :

On a: $\rho_A > \rho_B > \rho_C$

Alors:

Correction d'exercice 7

2

1) Le volume de ce métal est :

On a: $V_1 = 62 \, ml$ (volume du liquide)

Et: $V_2 = 76 \, ml$ (volume du liquide + le métal)

· La nature de ce métal :

On a:

A.N:

Donc:

Alors ce métal est le plomb.

Alors: $V = V_2 - V_1$

A.N: = 76 - 62

Donc: V = 14 ml

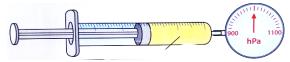
2) La masse du métal est :

$$m = 159.6 g$$

Correction d'exercice 8

On enferme un volume de l'air dans une seringue en bouchant son orifice par un appareil de mesure de la pression.

- 1) Le nom de cet appareil est le manomètre.
- 2) La valeur de la pression dans les deux cas est :


* $1^{ier} cas : P_1 = 0.6 bar$

* $2^{\text{ième}} \cos : P_2 = 2.6 \, bar$

- 3) Le volume de l'air dans la seringue va diminuer.
- 4) L'air dans la seringue va subir une compression.

Correction d'exercice 9

On emprisonne de l'air dans une seringue dont on a bouché son orifice par un manomètre.

- 1) La valeur de la pression dans la seringue est : $P = 1000 \, hPa$
- 2) Je convertis cette pression en Pa puis en Bar :

On a: $P = 1000 \ hPa$ et on sait que : $1 \ hPa = 100 \ Pa$; $1 \ bar = 1000 \ hPa$

Alors : $P = \frac{1000}{100} = 10 Pa$

Et aussi : $P = \frac{1000}{1000} = 1 \, bar$

- 3) On pousse le piston :
 - a) Le volume de l'air va diminuer.
 - b) La pression de l'air dans la seringue a augmenté.

Correction d'exercice 10

- 1) L'appareil qu'on utilise pour mesurer la pression atmosphérique est le baromètre.
- 2) La valeur de la pression atmosphérique au niveau de la mer est : $P_{atm} = 1013 \ hPa$
- 3) Lorsqu'on s'élève dans le ciel, la pression atmosphérique diminue.

4) Je convertis $P_{atm} = 899 \, hPa$ en mmHg:

On a: $760 \ mmHg \rightarrow 1013 \ hPa$ $P_{atm} \rightarrow 899 \ hPa$

Alors: Donc: