Nordic Bluetooth Mesh SDK transport reassemble-heap overflow 1

Thanks for reviewing !

Any question please contact us at jlu2014yanhan@163.com

Vulnerability description

Nordic Semiconductor is a fabless semiconductor company specializing in
wireless technology for the IoT.
Official website : https://www.nordicsemi.com/

In Nordic nRF5 SDK for Mesh, a heap overflow vulnerability can be triggered by
sending a series of segmented packets with SegO > SegN.

The affected SDK is nRF5 SDK for Mesh.
https://www.nordicsemi.com/Products/Development-software /nRF5-SDK-for-
Mesh/Download?lang=en#infotabs

The affected version is : version <= v5.0.0

The vulnerable function is trs_seg_packet_in in mesh/core/src/transport.c.

Vulnerability analysis

Analysis
SegO is a lower tansport layer field that indicates the segment offset number.
SegN is a lower transport layer field that indicates the last segment number.

Field Size Notes
(bits)
SEG 1 1 = Segmented Message
AKF 1 Application Key Flag
AID 6 Application key identifier
SZMIC 1 Size of TransMIC
SeqZero 13 Least significant bits of SeqAuth
SegO 5 Segment Offset number
SegN 5 Last Segment number
Segmentm | 8 to 96 Segment m of the Upper Transport Access PDU

Table 3.11: Segmented Access message format

When received first segmented packet, the mesh sdk will allocate a heap buffer to
cache the remaining segmented packets:

p_sar_ctx->payload = mesh_mem_alloc(length);

the length of buffer is (SegN + 1)xsingle_pdu_size, where single_pdu_size is 8 or
12, depending on CTL:

total_length = ((p_metadata->segmentation.last_segment + 1) *

{p_metadata—>net.control_packet));

The mesh sdk then continues to receive the remaining segmented packets, copies

them into the allocated buffer, where the destination address of memcpy is:
pbuffer + SegO * single_pdu_size

The mesh sdk doesn’t check whether SegO <= SegN when caching packets. if SegO

of currently received packet is greater than SegN of firstly received packet, a heap

overflow will occur.

segment_len
segment_offset

packet_len - ;
->segmentation.segment_offset *
(p_metadata—>net.control_packet);
(p_metadata->segmentation.segment_offset == p_sar_ctx->metadata.segmentation.last_segment)

p_sar_ctx->session.'ength = segment_offset + segment_len;

(segment_len != (p_metadata-=net.control_packet))

sar_ctx_cancel(p_sar_ctx, NRF_MESH_SAR_CANCEL_REASOM_INVALID_FORMAT);

(p_sar_ctx->metadata.net.internal.sequence_number < p_metadata-»net.internal.sequence_number)

p_sar_ctx->metadata.net = p_metadata—>net;

(&p_sar_ctx->payload [segment_offset], packet_mesh_trs_seg_payload_get(p_packet), segment_len);

POC
First, we send an access packet with SegN 1. The mesh sdk allocates a 24 bytes
buffer to cache the remaining packets.
Bluetooth Mesh
Network PDU
Lower Transport PDU
l... = SEG: Segmented Access Message (1)
.0.. = AKF: Device key (0)
..00 0000 AID: @
@ive cuun wasn waas saas aaae = SZMIC: 32-bit (O)
.100 0000 0000 00.. SeqZero: 4096
sess sass sass 2200 000. = Segment Offset number(Seg0): @
sers ssss snes ssss =220 0001 = Last Segment number(SegN): 1
Segment: aaaaaaaaaaaaaaaaaaaaaaaa

We then send an access packet with SegN 1 and SegO 2. Since SeqZero is the
same, this packet will be cached into the previously allocated buffer. However,
since the SegO is 2, the segment data will be copied into buffer[24] ~ buffer[35],
causing a heap overflow. Similarly, we can also send other packet with SegO
greater than 1 to write to other area.

Bluetooth Mesh
Network PDU
Lower Transport PDU
l... «... = SEG: Segmented Access Message (1)
.0.. = AKF: Device key (0)
..00 0000 AID: @
Duve wuws suws suss ssss sas. = SZMIC: 32-bit (0)
.100 0000 0000 00.. = SeqZero: 4096
sess sass sass 2.00 010. = Segment Offset number(Seg0):
sies ssss ssss sess ea@ @001 = Last Segment number(SegN): 1
Segment: aaaaaaaaaaaaaaaaaaaaaaaa

We added log print before mesh_mem_alloc in the sar_ctx_alloc and memcpy in the
trs_seg_packet_in. The log demonstrates that allocated buffer size is 24, while the
segment offset can be greater than 24, causmg heap overflow.

= . 2437237>, transport e -
tran_purt.
transport.
transport
transport.
transport.
transport.c
transport.
transport.
transport.
tran’pn“

¥, transport

[T= R T=]
Cd o

index
inde;

[Te]
ca

W
ca
-

|-
ca

-

=BTl
[I - |
0O o= O W s
[

[Ta}
(=]

ent 1|‘F‘F'- et
segment i =i nt offset

i T T T O RO T O O O T

(A=}
[x4]
ey iy e iy iy iy iy Ry iy Sy

[Te}
[#4]

SEGGER Debugger shows the memory state ofheap overflow.

Address: & sar_ctx->payload[@] Size: sizeof() Columns: Auto

AA

E

Fo

(s3]
[]
~l
(m]

4 [

EEEEEEEEEEEEEZEEEREEEER
EPEEEEEEEEEEEEEEEEEEERR
PEEREEEEEREEREEZEREEERR
EEEEEEEEEZEEEEZEEREER|E

PEEZEEEEREEREREEERRE
PEEEEREEEREEREEREEEREEEES
£

EEEEEEEEEEEREEEZEREEEERE
EEEEEEEEEEEREEZEREEERE
PEEEEEEEREZEREESEREEERE
PEEEEEEEEEEEREEEREREEERUR
PEEEEEEEREEEREEEEREREEER

PEEEEEEEREEEEEEEREREEEERE
EEEEEEEEEEEEEEEEEEEENE
PEEEEREEEREEREEERERERERR

PEEEEEEEREEREEEEEREER

References

Bluetooth Mesh
https://www.bluetooth.com/blog/introducing-bluetooth-mesh-networkin
Bluetooth Mesh Profile

https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1

https://www.bluetooth.com/blog/introducing-bluetooth-mesh-networking/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/

	Vulnerability description
	Vulnerability analysis
	References

