

Score Project: MeetMe
Product: Plunner

Score project summary report

Table of contents
Introduction

Abstract
Keywords
Objectives
Resources
Team
Definitions, Acronyms, Terms

Requirements
Actors
Functional Requirements
Non functional Requirements

The development process
SCRUM overview
SCRUM implementation and project plan

Project Plan
Scrum roles
Development Team organization
Contact with the customer
Daily meetings, sprint review meetings
Activities performed before the starting of the first sprint
Sprints

Design and implementation
Architecture

Tiers
MVC
Client Server Communication
External services
User interface

Technologies
Browser tier
DB server
Application Server
Client Communication
External Services

Optimization
Future improvements

Verification and validation
Frontend
Backend
Acceptance test plan

Lessons learned
Things that should have been improved
Things well done

Introduction
Abstract
Plunner is a new meeting planner addressed to small and medium business organisations. It
uses industry standard technologies like CalDAV.
The key feature of Plunner, with respect to existing ones, is the optimization function.
Plunner allows the optimization of all meetings of a company maximizing the number of
employees attending them.
Optimizing human resources and number of participants is an essential part in business
companies.

Keywords
Operations Research
Optimization
CalDAV
Meeting planner
Organisations
Companies
Business

Document Purpose
This document is intended to illustrate the features, the concepts and the development
process behind the project called “Plunner”. The focus is on the ideas that inspired the
project, the requirements, the design and the implementation of the project, the software
engineering strategy used. Besides, we describe how it has been tested and how the
experience of its development was from the point of view of the team behind it.

Background
In businesses and organizations meetings are essential for producing value and
guaranteeing the quality and correctness of a product or a service. Organizing these
meetings can be tedious and time consuming since different needs have to be harmonized
in order to find a suitable date and time. In addition to that, the tools usually used to organize
meetings are not powerful or intuitive enough for the needs of modern businesses or
organizations.

Objectives
Plunner is a web application which aims to solve the problems underlined above, by
providing a flexible and intuitive way to plan and organize meetings for businesses and
organizations. Plunner has optimization and simplicity in mind, so that:

●​ Meetings can be planned by importing schedules from external calendaring services
using CalDAV or by composing in-app schedules

●​ Meetings times and dates are determined automatically by optimizing (maximizing)
the number of participants

●​ All the functionalities of the application can be accessed using a simple, intuitive and

responsive web interface

Resources
We created a real domain associated with a web-server for our application.
For use the application, install it or contribute to it refer http://plunner.com/. For the
repositories associated with the project refer https://github.com/dsd-meetme.

Team
The team is distributed across different countries and universities and it is composed by:
Claudio Cardinale, Politecnico di Milano University, claudio.cardinale@mail.polimi.it
Denis Kuryshov, Politecnico di Milano University, jaibird2493@gmail.com
Jean Barré, Politecnico di Milano University, jeanperrin.barre@mail.polimi.it
Giorgio Pea, Politecnico di Milano University, giorgio.pea@mail.polimi.it
Mihovil Vinković, Mälardalen Högskola University, mihovilvinkovic@gmail.com
Emil Silađi, Mälardalen Högskola University, emil.siladi@gmail.com

Definitions, Acronyms, Terms

Keyword Definition
Registered Organization An organization that has registered to Plunner

Member A member of a registered organization. This member has
been registered into Plunner by its organization

Planner of a team g A particular Member that can manage the planning of
meetings for team g(one planner per team)

Team A set of Members of a registered organization. This set can
have no counterpart in the real life, it’s just a schema Plunner
imposes to simplify things

Schedule of a Member A set of time slots relative to a given period(a month for
example) in which the Member is busy

Sunday Midnight Sunday at 00:00 that is to say one minute after the 23:59 of
Saturday

Acronym or
abbreviation Definition

GLPK GNU Linear Programming Kit
LDAP Lightweight Directory Access Protocol
AWS Amazon Web Services
JWT JSON Web Tokens
LTS Long term support
HTTPS HTTP over SSL
HTTP Hypertext Transfer Protocol

http://plunner.com/
https://github.com/dsd-meetme
mailto:claudio.cardinale@mail.polimi.it
mailto:jaibird2493@gmail.com
mailto:jeanperrin.barre@mail.polimi.it
mailto:giorgio.pea@mail.polimi.it
mailto:mihovilvinkovic@gmail.com
mailto:emil.siladi@gmail.com

Requirements
Actors
The actors involved in the functional requirements of the project are:
Organization, Registered organization, Member, Planner of a team g (see Definitions
sections for more information)

Functional Requirements
Here we define functional requirements (Strikethrough requirements are not done). To
decide the right priority we have defined a simple, but systematic, mathematical method.

Score
For each requirement is assigned

●​ An effort in terms of hours
●​ A ROI with a fixed scale [0-100]
●​ The score calculated as: ROI^2/effort

For each user story the sum of the score of its requirements (TOTSCORE) is computed and
the following priorities are assigned as a consequence

●​ 1000 <= TOTSCORE ​​ ​ → High priority(HIGH)
●​ 500 <= TOTSCORE < 1000 ​ → Medium priority(MED)
●​ TOTSCORE < 500 ​​ → Low priority(LOW)

If a requirement has a ROI >= 90 then it is considered required.

Requirements

ID STORY
TOT

SCORE

1 As an organization I want to register and login to the service

5950

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1
The Service must allow an organization to signup via

email and password 5 100 2000

2
The Service must allow a registered organization to login

via email and password 5 100 2000

3
The Service must allow a registered organization to

recover its login credentials 5 80 1280

4
The Service must allow a registered organization to use

a two factor authentication 10 30 90

5 The Service must allow a remember me functionality 10 20 40

6
The Service must assign to a just registered organization

a service specific domain 15 90 540

7 The service must verify company email 5 35 245

8
The service must allow to see and edit personal

information 5 70 980

9 the service must allow to change the password 5 70 980

ID STORY
TOT

SCORE

2
As a registered organization I want to register/Import and to manage

my employees

1722.5

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1

The Service must allow a registered organization to
register to the service, within the organization's context,
its employees with their corporate email address and a

password 25 100 400

2

The Service must allow a registered organization to
import to the service, within the organization's, its

employees using a standard protocol(LDAP) 35 70 140

3

The Service must allow a registered organization to add
and remove to the service, within the organization's

context, employees 40 90 202.5

4

The Service must allow a registered organization to
automatically send via mail its service specific domain to
every new registered employee. This email will contain

also the password the organization chose for the
employee 5 70 980

ID STORY
TOT

SCORE

3 As a registered organization I want to create and manage my teams

2516.666

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1
The Service must allow a registered organization to

organize its employees in teams 20 90 405

2

The Service must allow a registered organization to
choose for each teams one of its member to become a

planner 10 85 722.5

3
The Service must allow a registered organization to

change the role of the members of each team 15 80 426.6666

4
The Service must allow a registered organization to
change the name and the composition of each team 20 80 320

5
The Service must allow a registered organization to

delete teams 10 75 562.5

6
The Service must allow a registered organization to

merge teams or split teams in subteams 20 40 80

ID STORY
TOT

SCORE

4
As a Member I want to login to the service within the context of the

organization

1223.333
3

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1

The Service must allow Members/planners to login within
the context of their organization using the corporate mail
and the password received when their were registered 30 100

333.3333
3

2
The Service must allow Members/planners to recover

their login credentials 10 70 490

3
The Service must allow the remember me functionality

for Members/planners 10 40 160

4
The Service must allow a Member/planner to use a two

factor authentication(this decision is made by the 15 60 240

Member/planner's organization)

5
The service must allow to see and edit personal

information 5 60 720

6 THe service must allow to change the password 5 60 720

ID STORY
TOT

SCORE

5
As a Member i want to upload from a file/import from an external

service my schedule and i want to manage it

1582.833
3

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1
The Service must allow Members to upload schedules as

files of a standard format 20 70 245

2

The Service must allow Members to import schedules
from external services using, when is possible, as

standard protocol like CalDav(otherwise using specific
apis) 30 90 270

3

The Service must allow Members to keep schedules
imported from external services in sync with those

services 30 80
213.3333

3

4
The Service must allow Members to keep track of the

schedules uploaded/imported 50 60 72

5 The Service must allow Members to remove schedules 10 60 360

6
The Service must allow Members to enable or disable

schedules 10 65 422.5

ID STORY
TOT

SCORE

6 As a Member I want to indicate the time slots when i'm free
675

MEDIUM

REQ
ID REQUIREMENT DESCRIPTION

EFFORT[
H]

ROI
[0-100] SCORE

1

The Service must allow Members to indicate in their
profile (in a calendar like view, using dragging) time slots

in which they're busy. 30 90 270

2 The Service must allow to change the busy time slots 20 90 405

ID STORY
TOT

SCORE

7
As a Member I want to export a planned meeting of my teams to my

calendars
960

MEDIUM

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[H]

ROI
[0-100] SCORE

1
The Service must be able to write a planned meeting to

external calendaring services 15 60 240

2

The Service must be able to generate a file with the
Member general schedule. This schedule will contain

also the planned meeting 5 60 720

ID STORY
TOT

SCORE

8
As a Member I want to receive notifications about meetings planned

for my teams

386.6666
6

LOW

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[H]

ROI
[0-100] SCORE

1

The Service must be able to send to Members
notifications about the status of a meeting to be planned

in which they're involved 15 70
326.6666

6

2

The Service must be able to send to Members
notifications about the necessity of an input to help

planning a meeting 15 30 60

ID STORY
TOT

SCORE

9 As a planner I want to plan meetings for a team

1719.66
66

HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1

The Service must allow planners to plan a meeting,
specifying a title, brief description, temporal interval and

some tags 30 100
333.333

33

2

The Service must allow planners to plan a meeting
specifying which Members of their teams are required

and/or invited 20 80 320

3

The Service must support meetings to be planned with a
given frequency(for example a team has to plan a

meeting every two weeks) 20 70 245

4

The Service must support meetings to be planned taking
in consideration of the different time zones of the

Members 10 80 640

5

The Service must support meetings to be planned trying
to maximize the number of Members that have to

partecipate to different meetings in the same temporal
interval (e.g i belong to 2 teams and their planners plans

two meetings in the same week) 50 80 128

6

The Service must support meetings to be planned with
given constraints (for example, the number of invited

Members has to be > k) 30 40
53.3333

33

ID STORY
TOT

SCORE

10 As a planner I want to manage meetings
1645
HIGH

REQ
ID REQUIREMENT DESCRIPTION

EFFORT
[h]

ROI
[0-100] SCORE

1
The Service must allow planners to drop a meeting to be

planned or already planned 10 80 640

2

The Service must allow planners to change the title, the
description, the Members of, the place of a meeting to

be planned or already planned 20 80 320

3
The Service must allow planners to change the temporal

interval of a meeting to be planned 10 80 640

4
The Service must allow planners to change the

constraints of a meeting to be planned 20 30 45

Non functional Requirements
In theory the team would have wanted to implement an high performance system with data
redundancy, high uptime, secure protocols and authentication, however for economical and
time reasons the team did not manage to achieve these requirements except for the use of a
secure authentication system based on JWT

The development process
SCRUM overview
The team has adopted the SCRUM software development methodology. SCRUM addresses
the problem of requirements volatility and unpredicted changes in a software project through
a series of tools, ideas and organization rules.
This methodology has been chosen for the following reasons:

●​ It organizes the development process in a way that the problem of requirements
volatility and unpredicted changes to the software project is addressed in a robust
and relatively simple way

●​ It promotes team working and communication and so it’s great to know new people
from different cultures and countries

●​ It imposes a systematic way to approach to the different steps of the development
process through sprints, meetings and sprint backlogs

●​ It is document oriented which is useful for the future careers of the members of the
project team and for the Score contest

SCRUM implementation and project plan
Project Plan
14/11/2015 to 28/11/2015: First Sprint + Alpha Version
28/11/2015 to 12/12/2015: Second Sprint + Beta Version
12/12/2015 to 26/12/2015: Third Sprint
26/12/2016 to 7/01/2016: Refinements, documentation upgrade
7/01/2016: Final Version

Scrum roles

●​ Product owner: Claudio Cardinale
●​ Scrum master: Giorgio Pea
●​ Development Team: All members of the project team

Development Team organization
Backend team:
Claudio Cardinale, controller/model developer, architecture manager
Emil Siladi, model developer
Mihovil Vinkovic, model developer
Denis Kuryshov, controller developer

Frontend team:
Giorgio Pea, view and logic developer
Jean Barre, view developer

Contact with the customer
The customer has been contacted only two times: the first time to discuss a target change
for the application (the target was changed toward small organizations and businesses) and
the second time to have an opinion about the final product. The communication has been

carried out via email. This low frequency of communication has been caused by the low time
available for the team and by the fact that the description of the project provided by the
Score was clear and understandable

Daily meetings, sprint review meetings
The team has decided that during each sprint the daily scrum meeting will be held everyday
at 18:30 CET/CEST (according to european DST)
The team has decided that at the end of each sprint a sprint review meeting will be held in
the afternoon in a convenient time for each team member.

Activities performed before the starting of the first sprint
Before the starting of the first sprint, the project team has completed the following tasks:

●​ Requirements gathering and discussion
●​ Choice of communication tools, meetings frequency, sprints duration
●​ Choice of development roles
●​ Choice of SCRUM roles
●​ Choice of programming languages and technologies
●​ Choice of a suitable software architecture

Sprints
The project team has decided to make 3 sprints of a 2 weeks length, this length has been
chosen because it guarantees a good balance between the necessity of being flexible and
adapts to changes and the necessity of a sufficient quantity of time for development with
quality and robustness the product.

Sprint 1 (from 14/11 to 28/11)

Requirements to be completed Was it
completed?

Organization Login and Registration
(Reqs 1.1, 1.2,1.3)

YES

Organization’s members registration, management and login
(Reqs 2.1, 2.3, 4.1, 4.2, 4.3)

YES

Organization’s teams creation and management
(Reqs 3.1, 3.2, 3.3, 3.4, 3.5)

YES

An organization’s member can import his/her schedules from an external
calendaring service using the CalDav protocol

(Reqs 9.1, 9.2, 9.3, 9.4, 9.5, 9.6)

NO

A planner can plan a meeting for its associated teams
(Reqs 10.1, 10.2, 10.3)

NO

Period Hours invested

First Sprint - first week 155

First Sprint - second week 167

 TOT: 322

Comments to this sprint:
Some requirements have not been completed in time and have been delayed to the second
sprint. After this first sprint the development team has realised that is necessary to increase the
quantity of work and to be more synergetic.

Sprint 2 (from 28/11 to 12/12)
The following requirements have been added to the project: 1.8, 1.9, 4.5, 4.6
The following requirements have been dropped: Reqs 1.4, 1.6, 1.7, 2.2, 2.4, 3.6, 4.4, 5.1, 7.1,
7.2, 8.2, 9.2, 9.3, 9.4, 9.6, 10.4

The dropping of the above mentioned requirements has been decided for reasons of time and
because of the common will of focusing on the meeting’s time optimization as the main feature of
the product.
At the end of this sprint all the requirements of the software have been completed.

Period Hours invested

Second Sprint - first week 196,5

Second Sprint - second week 224,5

 TOT: 421

Comments to this sprint
Some lack of communications emerged during this sprint, nevertheless the team manages to
complete all the requirements and also update some documentation.

Sprint 3 (from 12/12 to 26/12)
This sprint has been dedicated to testing, polishing and verification of the product. During this
sprint the frontend team has completed the design of the web interface of Plunner in a way that it
adapts to different screen resolutions (responsive design).

Period Hours invested

Third Sprint - first week 81,5

Third Sprint - second week 91

 TOT: 172,5

Design and implementation
Architecture

As visible from the picture above, Plunner adopts a 3 tier* client server architecture, the main
reasons behind this choice are the following ones:

●​ Scalability: the nodes composing the application server and db server can be
increased in number without the need of redesigning the whole system

●​ Reliability: since the chosen architecture is distributed, failures can be easily isolated
and database replications can be implemented without impacting too much on the
design of the whole system

●​ Adaptability: the chosen architecture can be easily enriched with a load balancer that
distributes and activates nodes in relation to the number of incoming requests.

●​ Security: since the chosen architecture strictly divides business logic and data and
since the application server and the db server can be easily isolated from the web
using firewalls, malicious attacks can be prevented and high level of security granted

*The web assets server is not considered in the account of tiers since its only purpose is to
deliver via the web the code that after being executed by a browser implements the frontend
part of Plunner

Tiers

●​ Application Server: a tier that manages and implements the business logic of the
entire application, it process and answers to requests from client’s browsers

●​ DB Server: a tier that manages the persistent data of the application
●​ Browser: a tier that represents the layer of interaction between the client and the

application

MVC
Both for the frontend and backend the team has decided to adopt a design pattern known as
MVC (Model View Controller). This choice has been made since the pattern is one of the

most used and tested in the industry and it lets the team split the work better and in a more
systematic way.

Client Server Communication
The communication between the client and server is realised via a remote set APIs that the
server makes available to the client. This communication method has been chosen for
reasons of flexibility, security and because it is easier to implement.

External services
Since Plunner is a calendar based application, an integration with external calendaring
services has been designed; the purpose of such integration is to give to the client the
chance to easily import schedules and facilitate the meeting planning. The team has thought
about using a standard and well diffused/supported protocol for integrating external
calendaring services and so during the implementation phase this has been taken in
consideration.

User interface
The team has decided to adapt a sleek, modern, minimalistic and business oriented web
interface that must be responsive.

Technologies
Browser tier
HTML, CSS, Javascript, AngularJS framework

DB server
MySQL, AWS (as future improvement for High traffic)

Application Server
PHP, Laravel framework (LTS version), Apache Server, AWS (as future improvement for
High traffic)

Client Communication
Remote set of apis implemented via the Laravel Framework following the RESTful standard

External Services
External calendaring services integration is made using the CalDAV.
The application respects user’s privacy and only reads the timeslots (meaning the starting
and ending times of every timeslot) in the calendars.
These technologies were chosen by the team for the following reasons:

●​ They are easy to learn and use
●​ They are powerful and well diffused (standard open protocol)
●​ Some members of the team had previous experience with them

Optimization
Since the members of the project do not have only programming skills, we decided to use
any available resources to perform a competitive product. Among them, knowledge in
Operations Research was helpful to optimise Plunner.
By analyzing the computation of a starting meeting time according to each participant's
schedules, we defined our problem through an linear program. We used GLPK, an open
source program to resolve the optimization problem, maximising the number of people to
attend the meeting. Below the mathematical model for implementation is detailed.
We maximise the number of people attending a meeting. We define two binary vars:
xij = {1 : person i attends meeting j; 0 : other cases}
yij = {1 : meeting i is planned to start at timeslot j; 0 : other cases}
In fact since we had to transform timeslots in a discrete form we decided to consider a
timeslot like an entity with a fixed time, for example we can have the following time zones
(every 15 minutes):
1 -> 01/12/15 00:00; 2 -> 01/12/15 00:1; 3 -> 01/12/15 00:30 ...
We have also the following parameters:

●​ UserAvailability: shows the timeslots when the user is available
●​ MeetingsAvailability: shows the timeslots when the meetings can be planned
●​ UsersMeetings: shows which users should participate to the meeting

We also have a list:
●​ MeetingsDuration: says the duration of a meeting

So we optimize:​ 𝑚𝑎𝑥
𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠; 𝑗 ∈ 𝑀𝑒𝑒𝑡𝑖𝑛𝑔𝑠

∑ (𝑥[𝑖, 𝑗] · 𝑀𝑒𝑒𝑡𝑖𝑛𝑔𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑗])

Here we have the complete model (with all constraints):​
https://github.com/dsd-meetme/backend/blob/master/app/Console/Commands/Optimise/mod
el.stub

With this optimization we are able to plan all meetings automatically, but to do that we have
to add some constraints (these are not the linear programming constraints) to work in a real
environment.

●​ A planner can plan a meeting for the weeks after, but a meeting must be planned
inside one week

●​ The optimization task is done on Sunday at midnight for the next week then
automatic email notifications are sent

●​ The week starts on Monday
●​ A planner can plan a meeting for the next week until Sunday midnight, since the

optimization is done on Sunday at midnight for the next week
●​ After the optimization is not possible to add new meetings to that week, but it is

possible to remove and update (information not date)
●​ A user can update the busy timeslots for the week after until Sunday midnight, like

planning. He can always compile busy timeslots for the weeks after the next one
●​ Timeslot is multiple of 15 minutes
●​ We always use UTC time

We have to proceed in this way since we decided to perform the optimization task one time
each week and it optimises the week after.

https://github.com/dsd-meetme/backend/blob/master/app/Console/Commands/Optimise/model.stub
https://github.com/dsd-meetme/backend/blob/master/app/Console/Commands/Optimise/model.stub

Counterexamples:
●​ if we select a longer period, meetings with availability of the next week are often

planned for it (probably in the next week they are able to find more employees), but
at the same time on the week after we have some meetings that are already planned
and we cannot optimise them again, so we cannot optimise the week properly
because we have old meetings planned that are like busy timeslots. If we don’t plan
them we are able to optimise the entire week with them (shifting them)

●​ if we select a lower period we don’t have enough timeslots to perform a good
optimization in fact for example if we choose a period of 3 days we have few
timeslots available to shift meetings and we don’t have the best optimization

Improvements:

●​ Customization: the company can choose the frequency of optimization task
●​ At the moment we can have meetings with only one employee (useless)
●​ Different kind of users (required and invited) given priority to one type
●​ Concentrate meetings to avoid empty timeslots
●​ If we have optimization errors -> rollback for that company
●​ Concentrate meetings to avoid empty timeslots

Future improvements

 Other external calendar services support
Users would appreciate a possibility to link their accounts with specific calendaring
application like Google Calendars or Microsoft Exchange through their specific APIs.

LDAP or Lightweight Directory Access Protocol
It is widely used by companies to manage their employee’s data. With this feature Plunner
could be used not only by little structure organisations but also by the big companies.

HTTPS
HTTPS greatly increases the security of the application a modern application should have it.

Future Plunner architecture with mobile application
The Plunner architecture in future can include such external additions as Mobile application.
Since during our development we have used RESTful api, it is very easy for extending.

Improve testing
Increasing test coverage, making automated whole system tests and increasing the amount
of stress testing done.

Unimplemented requirements
Due to timing restraints some requirements had to be cut.

Meeting prioritization
We want meetings to have a priority associated with them, which would make choosing to
which meeting to assign to which user, if there are meeting conflicts, easier.

Verification and validation
The verification and validation of Plunner has been conducted by the development team
using automatic tests and manual test with the support of different automated tools, such as:

●​ Travis CI for continuous integration with different environments
●​ Scrutinizer for code quality checking and test coverage (for Backend)
●​ CodeClimate for code quality and test coverage (for Frontend)

Every backend and frontend team member has worked in its own branch. After successful
testing, they pushed their results into master branch.

Frontend
Unit tests
Because of the low time available for the process and the relative complexity of it, unit
testing for the frontend covers only some modules of the application, the focus has been
pointed on manual tests. The tools used for frontend unit tests are Karma and Jasmine.
The results of frontend tests can be seen in the following links:

●​ For Code Climate: https://codeclimate.com/github/dsd-meetme/frontend
●​ For Travis CI: https://travis-ci.org/dsd-meetme/frontend

Manual tests
The manual tests performed by the frontend team include:

●​ Responsiveness tests: testing if the web interface adapts to different screen sizes
●​ Requirements testing: testing if all the functionalities exposed by the frontend part of

the application cover all the requirements
●​ Integration testing: testing if the frontend part integrates perfectly with the backend.
●​ Browser testing: testing if the web interface works properly with different browsers

Backend
Unit tests
The tool used for backend unit tests is PHPUnit customized by laravel. Due to development
in backend team, all participants of it performed backend tests.
The results of backend tests can be seen in the links:

●​ For Scrutinizer: https://scrutinizer-ci.com/g/dsd-meetme/backend/?branch=master
●​ For Travis CI: https://travis-ci.org/dsd-meetme/backend

Acceptance test plan
A simple acceptance test plan has been made so that the application is accepted if:

●​ It guarantees all the requirements
●​ It has a responsive web interface
●​ Its frontend part supports different browsers (including mobile browsers)

https://codeclimate.com/github/dsd-meetme/frontend
https://travis-ci.org/dsd-meetme/frontend
https://scrutinizer-ci.com/g/dsd-meetme/backend/?branch=master
https://travis-ci.org/dsd-meetme/backend

Lessons learned
Things that should have been improved

●​ Communication among team members
●​ Testing: more modules of the frontend part of the project should have been unit

tested and end to end tests using a tool like protractor should have been
implemented

●​ Optimization constraints on backend side

Things well done
●​ The team has used the Laravel framework version 5.1 LTS (3 years of support), so

that the software remains stable and well supported
●​ All errors are logged
●​ The project’s files organisation ideal for a big project
●​ The project can be easily configured via config files
●​ People testing the entire environment are different from people that developed these

functionalities to give an independent way
●​ A simple presentation site has been made to present the product and link to

installation instructions
●​ All time data is converted in UTC for reasons of simplicity and readability
●​ To prevent malicious attacks, every 30 days a user of Plunner has to sign in again

even if he or she has turned on the remember me functionality
●​ The frontend and the backend part of the application have been developed using two

repositories, so that the designed architecture of Plunner is perfectly reflected. This
organization of things accelerates and facilitates the development process

●​ Use of external services for high resources task, like sending emails
●​ As authentication technology JWT has been used: it protects against attacks like

CSRF or XSS and allows to reduce the amount of resources need on the backend
server.

●​ The backend part of the application is packeged via https://packagist.org/

https://packagist.org/

	
	
	
	Table of contents
	Introduction
	Abstract
	Keywords
	Objectives
	Resources
	Team
	Definitions, Acronyms, Terms
	

	Requirements
	Actors
	Functional Requirements
	Score
	Requirements

	
	Non functional Requirements

	The development process
	SCRUM overview
	SCRUM implementation and project plan
	Project Plan
	Scrum roles
	Development Team organization
	Contact with the customer
	Daily meetings, sprint review meetings
	Activities performed before the starting of the first sprint
	Sprints
	Sprint 1 (from 14/11 to 28/11)
	Comments to this sprint:

	Sprint 2 (from 28/11 to 12/12)
	Comments to this sprint

	Sprint 3 (from 12/12 to 26/12)

	Design and implementation
	Architecture
	Tiers
	MVC
	Client Server Communication
	External services
	User interface

	Technologies
	Browser tier
	DB server
	Application Server
	Client Communication
	External Services

	Optimization
	Future improvements

	Verification and validation
	Frontend
	Unit tests
	Manual tests

	Backend
	Unit tests

	Acceptance test plan

	Lessons learned
	Things that should have been improved
	Things well done

