Lab # 3 Continued Instruction Set Design; TTL SSI Chips vs simulation, HDL FPGA

Lauren Cugliotta
Senior Computer Engineer
Demonstrating: -

Scott Tevis
Junior Computer Engineer
Demonstrating: -

Andrew Boeren
Sophomore Computer Engineer
Demonstrating: -

1. Assignment

ASSIGNMENT: LAB #3 Continued Instruction Set Design; TTL SSI Chips vs simulation, HDL FPGA

COURSE: EGR/CS433 Advanced Computer Engineering Lecture & Lab

SYLLABUS: http://users.etown.edu/w/wunderjt/syllabi/CS433%20Wunderlich,Joseph.htm INSTRUCTOR: JT Wunderlich PhD

LATE PENALTY: Minus 33.3% per class period for each late item

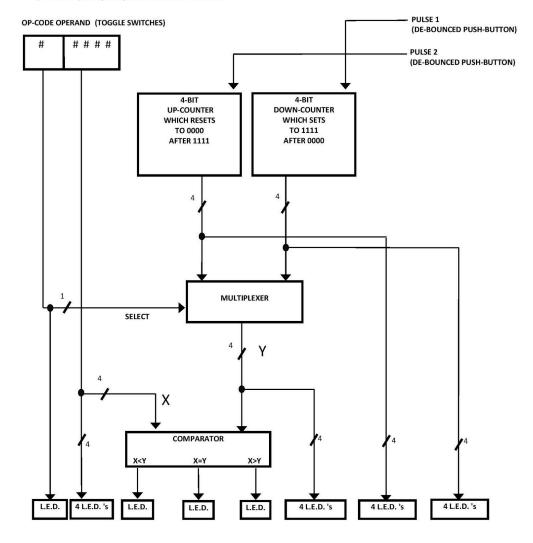
LAST REVISED: 3/11/20 ADAPTATION FOR CORONAVIRUS 3/12/20 CLASSES CANLCELED 3/13-3/17

Read our custom NanoLC Lab Manuals:

- 0
- PACKET 16 BOOKSTORE 433 Chips_PSU_Trainer Lab Manual v1.2
 PACKET 17 BOOKSTORE 433 2019 MANUAL FPGA using HDL (Hardware Descriptive Language)

For reference only: (EGR 333 topics): DE-BOUNCING SWITCHES: http://users.etown.edu/w/wunderjt/333_BOUNCE_2.pdf
RESISTORS: http://users.etown.edu/w/wunderjt/333_RESISTORS_pdf and http://users.etown.edu/w/wunderjt/333_RESISTORS_supplement%202.pdf **DURING LAB:** Design and implement the circuit below in five ways:

- A Logisim circuit simulation using only FLIP-FLOP's, INVERTORS, AND's, OR's, and NAND's for all circuits
- A Logism circuit similation using only FLIP FLOP's, HIVERTORS, AND S, ORS, and MANUS TO an including TTLSS tehips on circuit trainers using only FLIP FLOP's, HIVERTORS, AND S, ORS, MAND S TO an including TTLSS tehips on circuit trainers using only FLIP FLOP's, HIVERTORS, AND S, ORS, MAND S. MISS on implement 20 LED's (with resistors too, if needed) 2019 FPGA using HDL (Hardware Descriptive Language). OUTPUT ALL BUT THE OP-CODE AND OPERAND (i.e., since there are only 16 LED's on the FPGA)


4. CREATE ONE YOUTUBE VIDEO DEMONSTRATING ALL OF THE ABOVE (MAXIMUM 10 MINUTES!)

FPGA HDL BOARD/SIMULATION and TTL BREADBOARD WILL BE MADE INTO ANOTHER LAB WHEN WE RETURN TO PHYSICAL CLASSES

Instruction Set:

(OP-CODE=1): Compare operand to up-counter count

(OP-CODE=0): Compare operand to down-counter count

GRADE PERCENTAGES and DUE DATES:

```
Demonstrate IN YOUR YOUTUBE VIDEO PAD-234 Circuit Trainer circuits (primarily for 5 volt TTL chips)
20%) MON 3/23/20 AT 3:30P
                                  Demonstrate Old Circuit Trainer circuits [primarily for 5 volt TTL chips]
                    none
                                  Demonstrate RadioShack Circuit Trainer circuits [primarily for ~3 volt CMOS chips]
                    none
                                 Demonstrate IN YOUR YOUTUBE VIDEO Logisim Circuit simulations
(33%) FRI 3/27/20 AT 3:30PM
                                  Demonstrate Phoenix Contact NanoLC PLC simulations AND real-time systems
                                  Demonstrate Phoenix Contact Advanced Axioline PLC real-time systems (PCworks software)
                    none
                                  Demonstrate Phoenix Contact Advanced PLCnext PLC real-time systems
Demonstrate IN YOUR YOUTUBE VIDEO 2019 Field Programmable Gate Ar
                    none
                                                                                                le Gate Array (FPGA) simulations and Real-time systems (in HDL
(20%) MON 3/23/20 AT 3:30PA
                                                                                                                                       Hardware Descriptive Language)
                                  Demonstrate 2018 Field Programmable Gate Array (FPGA) simulations and Real-time systems
                    none
                                  Demonstrate INTEL 8051/80251 or ARM microcontroller simulations
                    none
                    none
                                  Demonstrate INTEL 8051/80251 or ARM microcontroller real-time systems
                    none
                                  Demonstrate Raspberry Pi real-time systems
                                  Demonstrate Arduino real-time systems
                    none
                                  Demonstrate Basic-Stamp real-time systems
                    none
                    none
                                  Demonstrate Direct PC-port real-time systems
                    none
                                  Demonstrate Remote mobile-device real-time systems
                    none
                                  Demonstrate LabView real-time systems
                                  Demonstrate Isolated high-voltage bench-test (with low Voltage electronics disconnected)
                    none
                    none
                                  Demonstrate Other:
                                 Submit Written Report VIA EMAIL TO ME
(33%) FRI 3/27/20 AT 3:30PM
                                  Submit PowerPoint, Poster, or Video: YOUTUBE VIDEO GRADED ON PRODUCTION AND COMMUNICATION/EFFICIENCY VALUE
(33%) FRI 3/27/20 AT 3:30PM
```

LAB RULES & PROCEDURES

IF LABS ARE BUILT (AND POSSIBLY REBUILT), BUT DON'T FULLY FUNCTION: For demonstrations and reports, deduct depends on how adequately you identify problems. For example, make test set-ups to verify functionality of isolated simulation sub-parts, chips, circuit trainer elements, software, relays, other electronics, motors or other higher-voltage circuits and devices. PROVE THAT NO EASY FIX OR SUBSTITUTION WAS POSSIBLE or EASILY IDENTIFIABLE AT THE TIME. Discuss (1) How you identified problems, and (2) How you tried to fix them. Include evidence that you fully understand and have properly connected all pins on a given chip (including considering floating-pins, powering the chip, needed pullup resistors, proper voltage levels, etc.), and that you have exhausted much time attempted to solve all problems.

DEMONSTRATIONS Alternate team members demonstrate lab to me (partners must be present). We do this for previous week's assignment while you begin the next assignment. TEAM LEADER has responsibility of coordinating all equipment problems and acquisition of needed parts. Try to stick with same person for this role. REPORTS must include:

- PHOTO'S OF ALL CIRCUITS AND TEST SET-UP'S BUILT
- Title Page with lab number, name of lab, your names, Majors, Year (e.g., Junior), who is demonstrating, and who is the designated TEAM LEADER
- Sections numbered and tilted as follows (always list all of these, and simply put "NA" if not applicable):
 - "Assignment" (An exact copy of everything in this document -- exactly how it looks here)
 - "Equipment Used" (A list of hardware and software) INCLUDE PHOTO'S OF ALL EQUIPMENT "Methodology" (including all DESIGN STEPS, analysis, DECISIONS MADE, etc.) INCLUDE PHOTO'S OF ALL CIRCUITS BUILT

```
ALL DESIGN STEPS MUST BE INCLUDED for Digital Logic designs (NUMBERED as in EGR/CS 332). If design step not done, list as "N.A."
For Combinational Digital Logic Design:
       Step 1: Define problem
       Step 2: Encode variables
       Step 3: Create truth table
       Step 4: Find simplified function(s)
       Step 5: Draw logic circuit
       Step 6: Convert to NAND's
       Step 7: Check assumptions
       Step 8: Chip circuit diagram
For Sequential Digital Logic Design::
       Step 1: Define problem
       Step 2: Create state diagram
       Step 3: Encode variables
       Step 4: Minimize machine
       Step 5: Create state table
       Step 6: Append flip-flop inputs
       Step 7: Find simplified function(s)
       Step 8: Draw logic circuit
       Step 9: Convert to NAND's
       Step 10: Analyze any unused states
       Step 11: Revise state diagram
       Step 12: Check Assumptions
       Step 13: Chip circuit diagram
COLOR-CODED LOGIC DIAGRAMS are required for any digital circuit (Breadboard, FPGA, etc.)
COLOR-CODED CIRCUIT SCHEMATICS are required for any circuit implemented (Breadboard, PLC, ladder logic, etc.), color is a must, hand-colored is ok
FLOW CHART is required for any program
COMMENT EVERY LINE OF CODE
```

- "Options" (if applicable, a comparison of each method used)
- "Problems Encountered" (including any debugging methodology) INCLUDE PHOTO'S OF ANY TEST-CIRCUITS BUILT 5.
- 6. "Testing Methodology" (including timing traces, test-vectors, and RATIONALE FOR HOW YOUR METHODOLOGY ASSURES QUALITY)
- Including estimated PROBABILITY of satisfactory coverage by chosen test vectors
- "References" (in standard IEEE format)
 "Appendices" (for spec sheets, etc.)
- 8

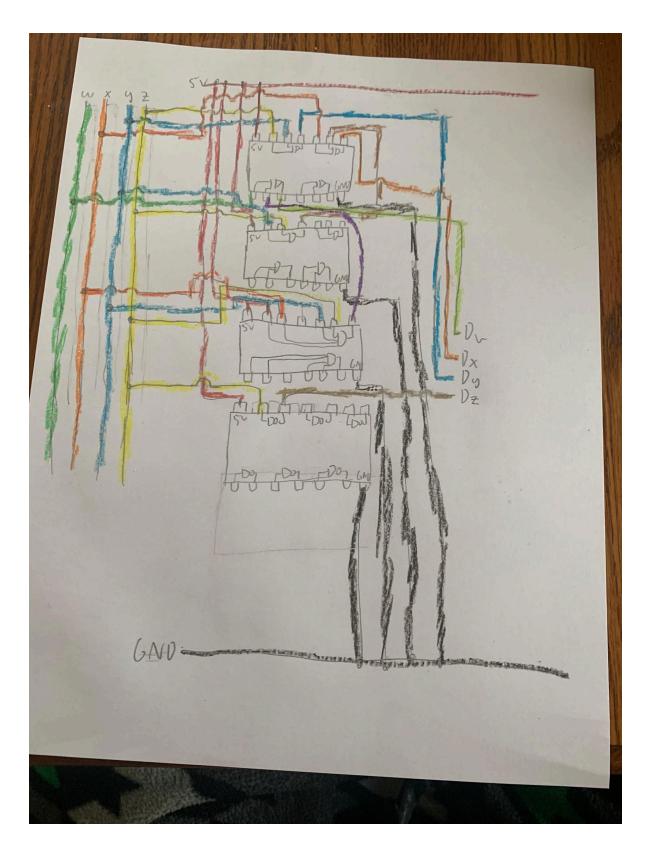
2. Equipment Used

Software:

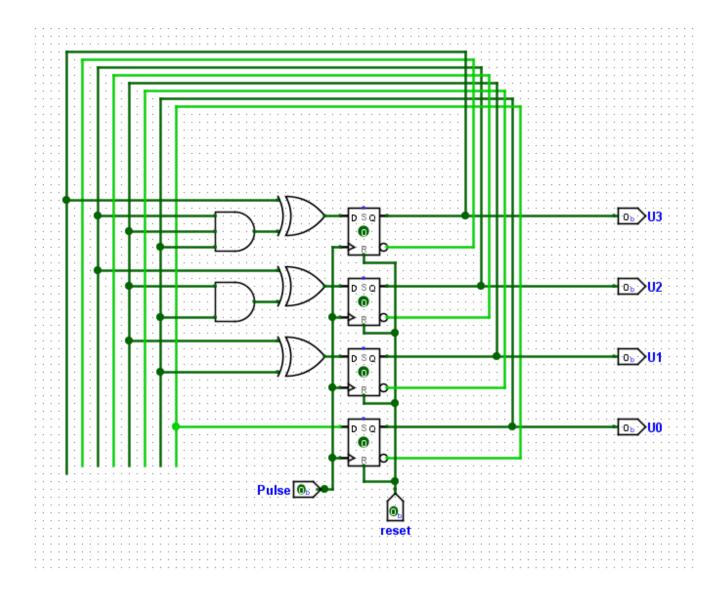
• Logisim

3. Methodology

Design Process Steps

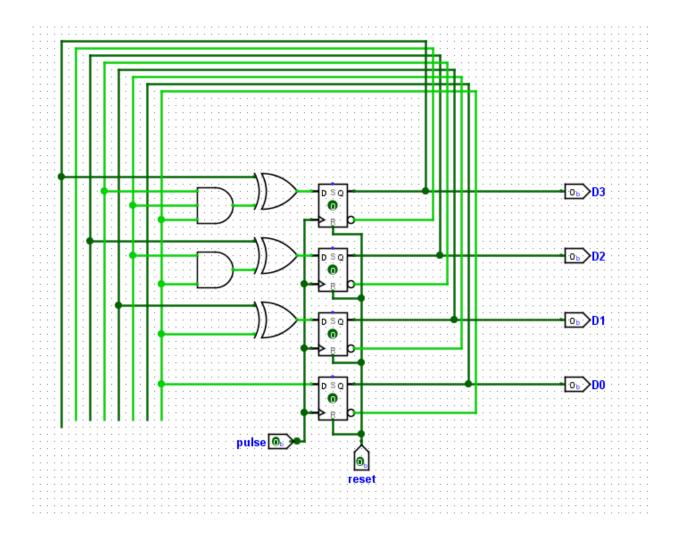

Step 1, Define Problem

The problem for this lab was to create two 4-bit counters, one up and one down, a multiplexer and a 4-bit comparator. This requires a total of 8 inputs (clocks for each counter, a reset, operand, and comparator inputs).


Step 2-6: Create state diagram, Encode Variables, Minimize machine, Create state table, Append flip-flops

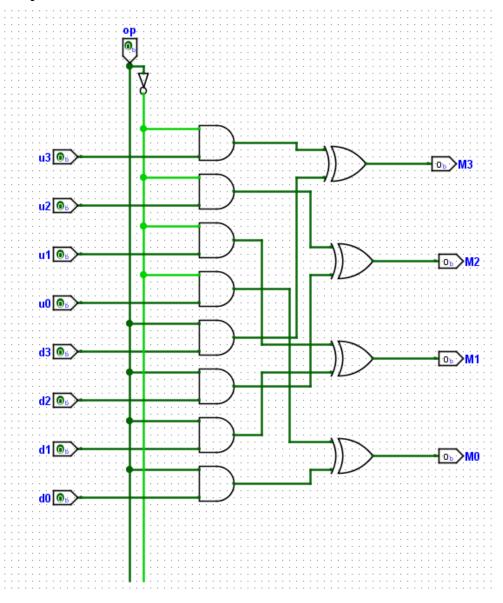
For each counter we now have 16 states. For each counter what will change is the progression of states. Each counter needs 4 D Flip-Flops to work and expanded on the difficulty of the previous counters from Lab 2.

WY Counter WX 9 2 Q(6+1) D D D D D D D D D D D D D D D D D D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	--

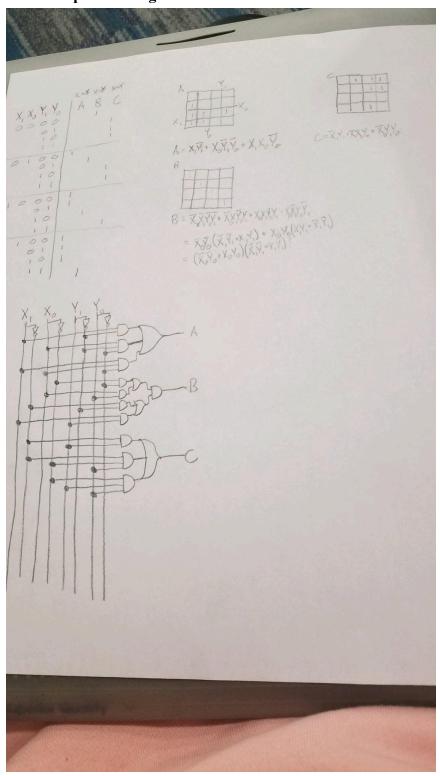


Up Counter in Logisim

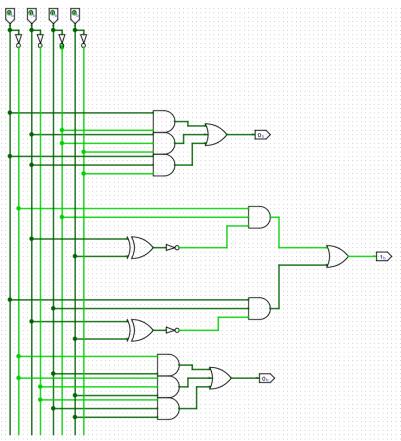
	lutte mit	14811/13/11	1 (13) (17) (1) 1017	11/1/11
Q(t)	Q(t+1)	De Ux Des Dz	down Count	a
			Dx Vo oo o o o o o o o o o o o o o o o o	DZ = \(\frac{7}{2}\) \(\frac{7}{2} + 92\) \(7
1 734			17.	THE PARTY OF
			Dw 00 60	
	VX+	wy+ wz+vx	JE OTO)×
		y+ 2)+ UX52	o CE	X
	ルニレの	XýŽ	2	

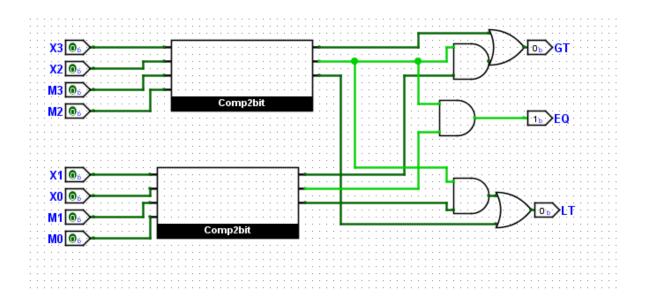

Down Counter in Logisim

Step 7-8: Find simplified function(s), Draw logic circuit

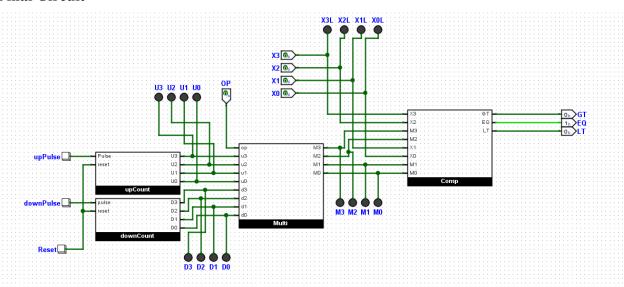

Next we made an Ad Hoc Multiplexer. Since an 9-input truth table wasn't a logical step to take, it was easier to use the idea of the previous multiplexer and expand on it from there. We knew that by reusing the assets for each bit from Lab 2 Multiplexer we could implement them for each new bit.

Multiplexer




After that we began to work on the comparator. At first we were overwhelmed since we couldn't do an 8-input truth table. While we contemplated how to solve the issue, Clay suggested using two 2-bit comparators, instead of making one big 4-bit comparator. This completely changed the difficulty and we were able to easily solve this problem with a little ingenuity from Andrew.

2 Bit Comparator Logic from Lab 2



2 Bit Comparator

Final Circuit

Step 9: Convert to NANDs

Due to the overall complexity of this lab, we decided not to convert to NANDS to both save time and remove the need to overcomplicate things.

Step 10-11: Analyze any unused states, Revise state diagram

We had no unused states and therefore had no need to revise our state diagram.

Step 12: Check assumptions

We would assume our clock pulses work for our circuit trainer but we cannot confirm this assumption at this time.

Step 13: Chip circuit diagram

Like the last lab, our space on the circuit trainer had been extremely limited. Therefore we used a comparator chip again to decrease the amount of space we needed on the trainer. We did create the multiplexer and counters with gates and flip-flops however. (We did create the circuit in the lab before online classes began but we have no video/pictures).

4. Options

Logisim:

The options came from the multiplexer and the comparator. For the multiplexer, we could have used OR gates instead of XORs for the final output. Both gave the desired result but the XOR felt more correct and accurate to us.

For the comparator, we could have tried to make a 4-bit comparator from scratch but it would have been difficult to do. So we chose the easy option of combining two 2-bit comparators instead.

5. Problems Encountered

Logisim Simulations:

The main problems we encountered came from the 4-bit comparator. When we were unable to solve a truth table for the comparator, we looked up what the circuit should look like. This was for us to try to reverse engineer a truth table out of it. In the end it proved too difficult for us to work with and when we changed to the multi 2-bit comparator, some of the inputs were messed up from the previous attempt.

6. Testing Methodology

Logisim Circuit Simulations:

For this lab, we had a total of 512 possible outcomes. It was not feasible to test each outcome due to the immense number. We got an approximate 25% certainty by completing 128 tests. These tests are the lowest state of the User Input (0000), the highest state (1111), and two opposite middle states (1010 and 0101).

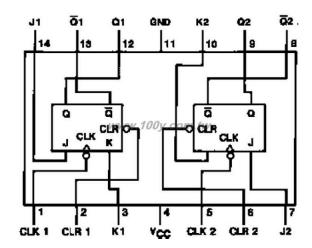
This way we confirm that the Less Than and Greater Than outputs work in their respective extremes and work somewhere in the middle. However, the Equals To output may be ineffective, but we do get 4 outputs on each counter to feel comfortable with.

Our certainty could likely be higher if we assume that our outputs from lab 2 are counted or considered. But due to them being needed to be checked again, we can't guarantee that.

7. References

DM74LS73AN Fairchild 14P/DIP. [Online]. Available: http://us.100y.com.tw/viewproduct.asp?MNo=33000. [Accessed: 03-Feb-2019].

K. Carman and C. Buxton, "nanoLC Programmable Logic Controller (PLC) Manual Including nanoNavigator Software." .


Admin, "SN74LS86AN DOWNLOAD," *Atelier*, 18-Oct-2018. [Online]. Available: http://atelier.cc/sn74ls86an-42/. [Accessed: 03-Feb-2019].

Pandey, Harshita. "Magnitude Comparator in Digital Logic." *GeeksforGeeks*, 25 Nov. 2019, www.geeksforgeeks.org/magnitude-comparator-in-digital-logic/.

8. Appendices


Diagrams used:

JK Flip Flop Chip Circuit Diagram

Source: http://us.100y.com.tw/viewproduct.asp?MNo=33000

XOR Chip Circuit Diagram

Source: http://atelier.cc/sn74ls86an-42/