Citation of optomechanical SQ network

  1. OpenFlow Extensions for Programmable Quantum Networks, Authors: Venkat Dasari; Nikolai Snow; Billy Geerhart; Sam Snodgrass, Report No. ARL-TR-8043, 2017
  2. Rui-xia Wang, Kang cai, Zhang-qi Yin*, Gui-lu Long*, “Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble”, arXiv:1705.10954.
  3. Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array, Lu Qi, Yan Xing, Hong-Fu Wang, Ai-Dong Zhu, and Shou Zhang, Optics Express Vol. 25, Issue 15, pp. 17948-17959 (2017)
  4. Spatially Adiabatic Frequency Conversion in Optoelectromechanical Arrays, Ondřej Černotík, Sahand Mahmoodian, Klemens Hammerer,  arXiv:1707.03339
  5. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “The second order magnetic field gradient induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator”, Sci. China. Phys. Mech. Astro. 60, 070311 (2017), arXiv:1610.09922
  6. Shortcuts to adiabaticity in the presence of a continuum: applications to itinerant quantum state transfer Alexandre Baksic, Ron Belyansky, Hugo Ribeiro, Aashish A. Clerk; arXiv:1705.04239
  7. Shengyan Liu, Tongcang Li*, Zhang-qi Yin*, “Coupling the librational and translational motion of a levitated nano-particle with an optical cavity”,  Journal of the Optical Society of America B 34, C8 (2017).
  8. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “Strong coupling between electrons spins and mechanical oscillator through the second order magnetic field gradient”, arXiv:1610.09922.
  9. Yue Ma, Thai M. Hoang, Ming Gong*, Tongcang Li*, and Zhang-qi Yin*, “Quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond”, arXiv:1611.05599.
  10. Abdo B, Hertzberg J B. Quantum coherent microwave to optical conversion scheme employing a mechanical element and a squid: U.S. Patent 9,454,061[P]. 2016-9-27.
  11. Zhang-qi Yin*, Tongcang Li*, “Bringing quantum mechanics to life: from Schrodinger's cat to Schrodinger's microbe”, arXiv:1608.05322.
  12. Quantum routing of single optical photons with a superconducting flux qubit; Keyu Xia, Fedor Jelezko, Jason Twamley;  arXiv:1608.05135
  13. Interfacing superconducting qubits and single optical photons; Sumanta Das, Sanli Faez, Anders S. Sørensen;  arXiv:1607.06271
  14. Steady-state mechanical squeezing in a double-cavity optomechanical system; Dong-Yang Wang, Cheng-Hua Bai, Hong-Fu Wang, Ai-Dong Zhu, Shou Zhang; arXiv:1605.00736
  15. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity; Dong-Yang Wang, Cheng-Hua Bai, Hong-Fu Wang, Ai-Dong Zhu & Shou Zhang; Scientific Reports 6, Article number: 24421 (2016)
  16. Li Z F, Li P B, Li F L. Entangling a single NV centre with a superconducting qubit via parametric couplings between photons and phonons in a hybrid system[J]. Journal of Modern Optics, 2016: 1-7.
  17. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip; Chang-Ling Zou, Xu Han, Liang Jiang, Hong X. Tang; arXiv:1604.06027
  18. Yue Ma, Zhang-qi Yin*,  Pu Huang, W. L. Yang, and Jiangfeng Du*, “Cooling Mechanical Resonator to Quantum Regime by Heating it”,  arXiv:1603.05807.
  19. Zheng-Yuan Xue, Zhang-Qi Yin*, Yan Chen, Z. D. Wang*, Shi-Liang Zhu*, "Topologically-protected quantum memory interfacing atomic and superconducting qubits", 已被《中国科学》接收,arXiv:1301.4139. (被引用3次).
  20. Pei, Pei, et al. "Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface." Chinese Physics Letters 33.02 (2016): 20301.
  21. Measurement-Induced Long-Distance Entanglement of Superconducting Qubits using Optomechanical Transducers; Ondřej Černotík, Klemens Hammerer;  arXiv:1512.00768
  22. Luo M-X, Wang X. 2015 Universal remote quantum computation assisted by the cavity input–output process. Proc.R.Soc. A 471: 20150274
  23. Tongcang Li* and Zhang-Qi Yin*, “Quantum superposition and entanglement of a living microorganism on an electromechanical oscillator”, arXiv:1509.03763
  24. Quantum network for information processing on superconducting qubits with dark microwave photons, Ming Hua, Ming-Jie Tao, and Fu-Guo Deng, arXiv:1511.00090
  25. Olson, Gustaf Anders. "Growth of titanium-nitride thin films for low-loss superconducting quantum circuits." PhD diss., University of Illinois at Urbana-Champaign, 2015.
  26. Meystre, Pierre. "Les Houches Quantum Optomechanics School 2015–Lecture Notes."
  27. Title: Optomechanical Interfaces for Hybrid Quantum Networks; Authors: Chunhua Dong, Yingdan Wang, Hailin Wang; Source: National Science Review, online publication
  28. Zhang-qi Yin, Yong-chun Liu and Yun-feng Xiao, Nonclassical light sources and frequency converters with integrated opto-mechanical systems, book chapter in 'Integrated nanophotonic resonators: fundamentals, devices and applications', to be published by Pan Stanford Publishing Pte. Ltd. Singapore in Oct, 2015
  29. Dark state in a nonlinear optomechanical system with quadratic coupling; Yue-Xin Huang, Xiang-Fa Zhou, Guang-Can Guo, and Yong-Sheng Zhang; Phys. Rev. A 92, 013829 (2015)
  30. Zhang-qi Yin, Zhao Nan, Tongcang Li, "Hybrid opto-mechanical systems with nitrogen-vacancy centers" (review), submitted to SCIENCE CHINA Physics, Mechanics & Astronomy, arXiv:1501:00636.
  31. Title: Time Resolved Phase Space Tomography of an Optomechanical Cavity; Authors: Oren Suchoi, Keren Shlomi, Lior Ella, Eyal Buks; Source: arXiv:1408.2331
  32. Title: Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation; Authors: Oren Suchoi, Lior Ella, Oleg Shtempluk, and Eyal Buks; Source: Phys. Rev. A 90, 033818
  33. Title: Optomechanical microwave sensor at the sub-photon level; Authors: Keye Zhang, Francesco Bariani, Ying Dong, Weiping Zhang, Pierre Meystre; Source: PRL 114,113601 (2015), arXiv:1410.0070