Citation of optomechanical SQ network

  1. Optical response mediated by a two-level system in the hybrid optomechanical system, Zhang, Y., Liu, T., Wu, S. et al. Quantum Inf Process (2018) 17: 209. https://doi.org/10.1007/s11128-018-1980-0
  2. Pang, Belinda Heyun (2018) Theoretical Foundations for Quantum Measurement in a General Relativistic Framework. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/dfyy-y188. http://resolver.caltech.edu/CaltechTHESIS:06082018-212416022
  3. Hua, M., Tao, MJ., Alsaedi, A. et al. Quantum Inf Process (2018) 17: 151. https://doi.org/10.1007/s11128-018-1913-y
  4. Ke-wen Xiao, Anda Xiong, Nan Zhao, Zhang-qi Yin*, “Synthetic cooling translational mode of an optically trapped nanoparticle through librational mode”, arXiv:1805.02469.
  5. Coupling a single NV center with a superconducting qubit via the electro-optic effect, Chang-Hao Li, Peng-Bo Li, arXiv:1804.10722
  6. Optomechanical Entanglement of Remote Microwave Cavities, Samuel  R.  Hedemann and  B. D. Clader, arXiv:1804.09249
  7. Pei Pei,He-Fei Huang,Yan-Qing Guo et al . Quantum state transfer via a hybrid solid-optomechanical interface[J]. Chin. Phys. B, 2018, 27(2):024203.
  8. Xing-yu Gao, Zhang-qi Yin*, Tongcang Li*, “High-speed quantum transducer with a single-photon emitter in a 2D resonator”, arXiv:1712.09245.
  9. Coupling mechanical motion of a single atom to a micromechanical cantilever, Wenjie Nie, Aixi Chen, and Yueheng Lan, Optics Express Vol. 25, Issue 26, pp. 32931-32947 (2017)
  10. OpenFlow Extensions for Programmable Quantum Networks, Authors: Venkat Dasari; Nikolai Snow; Billy Geerhart; Sam Snodgrass, Report No. ARL-TR-8043, 2017
  11. Rui-xia Wang, Kang cai, Zhang-qi Yin*, Gui-lu Long*, “Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble”, arXiv:1705.10954.
  12. Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array, Lu Qi, Yan Xing, Hong-Fu Wang, Ai-Dong Zhu, and Shou Zhang, Optics Express Vol. 25, Issue 15, pp. 17948-17959 (2017)
  13. Spatially Adiabatic Frequency Conversion in Optoelectromechanical Arrays, Ondřej Černotík, Sahand Mahmoodian, Klemens Hammerer,  arXiv:1707.03339
  14. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “The second order magnetic field gradient induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator”, Sci. China. Phys. Mech. Astro. 60, 070311 (2017), arXiv:1610.09922
  15. Shortcuts to adiabaticity in the presence of a continuum: applications to itinerant quantum state transfer Alexandre Baksic, Ron Belyansky, Hugo Ribeiro, Aashish A. Clerk; arXiv:1705.04239
  16. Shengyan Liu, Tongcang Li*, Zhang-qi Yin*, “Coupling the librational and translational motion of a levitated nano-particle with an optical cavity”,  Journal of the Optical Society of America B 34, C8 (2017).
  17. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “Strong coupling between electrons spins and mechanical oscillator through the second order magnetic field gradient”, arXiv:1610.09922.
  18. Yue Ma, Thai M. Hoang, Ming Gong*, Tongcang Li*, and Zhang-qi Yin*, “Quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond”, arXiv:1611.05599.
  19. Abdo B, Hertzberg J B. Quantum coherent microwave to optical conversion scheme employing a mechanical element and a squid: U.S. Patent 9,454,061[P]. 2016-9-27.
  20. Zhang-qi Yin*, Tongcang Li*, “Bringing quantum mechanics to life: from Schrodinger's cat to Schrodinger's microbe”, arXiv:1608.05322.
  21. Quantum routing of single optical photons with a superconducting flux qubit; Keyu Xia, Fedor Jelezko, Jason Twamley;  arXiv:1608.05135
  22. Interfacing superconducting qubits and single optical photons; Sumanta Das, Sanli Faez, Anders S. Sørensen;  arXiv:1607.06271
  23. Steady-state mechanical squeezing in a double-cavity optomechanical system; Dong-Yang Wang, Cheng-Hua Bai, Hong-Fu Wang, Ai-Dong Zhu, Shou Zhang; arXiv:1605.00736
  24. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity; Dong-Yang Wang, Cheng-Hua Bai, Hong-Fu Wang, Ai-Dong Zhu & Shou Zhang; Scientific Reports 6, Article number: 24421 (2016)
  25. Li Z F, Li P B, Li F L. Entangling a single NV centre with a superconducting qubit via parametric couplings between photons and phonons in a hybrid system[J]. Journal of Modern Optics, 2016: 1-7.
  26. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip; Chang-Ling Zou, Xu Han, Liang Jiang, Hong X. Tang; arXiv:1604.06027
  27. Yue Ma, Zhang-qi Yin*,  Pu Huang, W. L. Yang, and Jiangfeng Du*, “Cooling Mechanical Resonator to Quantum Regime by Heating it”,  arXiv:1603.05807.
  28. Zheng-Yuan Xue, Zhang-Qi Yin*, Yan Chen, Z. D. Wang*, Shi-Liang Zhu*, "Topologically-protected quantum memory interfacing atomic and superconducting qubits", 已被《中国科学》接收,arXiv:1301.4139. (被引用3次).
  29. Pei, Pei, et al. "Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface." Chinese Physics Letters 33.02 (2016): 20301.
  30. Measurement-Induced Long-Distance Entanglement of Superconducting Qubits using Optomechanical Transducers; Ondřej Černotík, Klemens Hammerer;  arXiv:1512.00768
  31. Luo M-X, Wang X. 2015 Universal remote quantum computation assisted by the cavity input–output process. Proc.R.Soc. A 471: 20150274
  32. Tongcang Li* and Zhang-Qi Yin*, “Quantum superposition and entanglement of a living microorganism on an electromechanical oscillator”, arXiv:1509.03763
  33. Universal Distributed Quantum Computing on Superconducting Qutrits with Dark Photons, M. Hua, M. Tao, A. Alsaedi, T. Hayat, F. Deng, ANNALEN DER PHYSIK 2018, 1700402. https://doi.org/10.1002/andp.201700402
  34. Olson, Gustaf Anders. "Growth of titanium-nitride thin films for low-loss superconducting quantum circuits." PhD diss., University of Illinois at Urbana-Champaign, 2015.
  35. Meystre, Pierre. "Les Houches Quantum Optomechanics School 2015–Lecture Notes."
  36. Title: Optomechanical Interfaces for Hybrid Quantum Networks; Authors: Chunhua Dong, Yingdan Wang, Hailin Wang; Source: National Science Review, online publication
  37. Zhang-qi Yin, Yong-chun Liu and Yun-feng Xiao, Nonclassical light sources and frequency converters with integrated opto-mechanical systems, book chapter in 'Integrated nanophotonic resonators: fundamentals, devices and applications', to be published by Pan Stanford Publishing Pte. Ltd. Singapore in Oct, 2015
  38. Dark state in a nonlinear optomechanical system with quadratic coupling; Yue-Xin Huang, Xiang-Fa Zhou, Guang-Can Guo, and Yong-Sheng Zhang; Phys. Rev. A 92, 013829 (2015)
  39. Zhang-qi Yin, Zhao Nan, Tongcang Li, "Hybrid opto-mechanical systems with nitrogen-vacancy centers" (review), submitted to SCIENCE CHINA Physics, Mechanics & Astronomy, arXiv:1501:00636.
  40. Title: Time Resolved Phase Space Tomography of an Optomechanical Cavity; Authors: Oren Suchoi, Keren Shlomi, Lior Ella, Eyal Buks; Source: arXiv:1408.2331
  41. Title: Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation; Authors: Oren Suchoi, Lior Ella, Oleg Shtempluk, and Eyal Buks; Source: Phys. Rev. A 90, 033818
  42. Title: Optomechanical microwave sensor at the sub-photon level; Authors: Keye Zhang, Francesco Bariani, Ying Dong, Weiping Zhang, Pierre Meystre; Source: PRL 114,113601 (2015), arXiv:1410.0070