AVRO-457: Tools for Reading & Writing XML Files from/to Avro

This is a proposal for reading one or more XML files with the same XML Schema
(XSD), and converting the contents of the XML schema into Avro data types, and
writing the resulting Avro document. This proposal also covers translating data in
the reverse direction.

Document Representation

XML Documents are a series of tags in tree form, starting with a root element that spans the
entire document. Elements have attributes (named metadata whose values are only in text form),
and both starting and ending tags. Between the starting and ending tags are one of: nothing (an
empty tag), text, child elements, or a mixed combination of both text and child elements.

Child elements defined by an XML Schema are always part of some kind of group: sequence,
choice, or all. In a sequence group, the child elements must occur in the order they are defined.
In a choice group, one element must be present, but it can be any of the children defined in the
choice group. Finally, all of the elements in an a// group must appear, but they may occur in any
order. Any group may contain sequence or choice sub-groups, but the all group must be
top-level when used.

All child elements may be defined to occur between [0, unbounded] times. The default is for a
child element to appear exactly once. This includes both the child elements themselves and
groups containing child elements.

Finally, an element can define itself to be a substitution for another element. When this happens,
the base element can be replaced by the substitution element wherever the base element appears
in the document. For example, if element B declares itself to be a substitution of element A,
element B may appear anywhere in the document that A is declared. This effectively declares A
to be a choice group containing (A, B). Note: A could also declare itself to be “abstract,”
meaning it can only be replaced by a substitution element. In the prior example, the choice
group would contain only B.

As aresult, XML elements are best defined as Avro records. Each attribute is a key-value pair,
whose value is a simple type, and likewise can be represented as a field with a primitive type. If
an element is not empty, its content would be represented as a field with the same name as the
element. Based on the element content, the value of this field would be:



e Text-Only (Simple Content): The value of that field would be the corresponding primitive
type.

e [Elements-Only (Group): Children can be represented as an array of union of all possible
child types. This does not capture the fidelity of groups represented in XML Schema, but
it is a decent format for reading the children.

o FElements + Text (Mixed) Content: This would be represented as an array of a union of
string and the other types represented by child elements.

The last case to consider is where a child element may be substituted by another element. Since

this is effectively a choice group, it is best represented as a union of all of the types that can
represent that child element.

Simple XML Types vs. Avro Primitive Types

XML Schema defines a type hierarchy that far exceeds what can be represented in Avro. For
example, there are 19 primitive data types in XML Schema compared to only 9 in Avro,

including decimal. In XML Schema, all types are derived from anyType, and are expanded upon

with the following different types of restrictions, called “facets:”

length
minLength
maxLength
pattern
enumeration
whiteSpace
maxExclusive
maxInclusive
minExclusive
minlnclusive
totalDigits
fractionDigits

While most of these are self-explanatory, “pattern” is the most interesting. This defines a Perl
regular expression used to describe the text. For example, the XML Schema integer type is
restricted by a pattern facet of "[\-+]?[0-9]+".

As a result, all XML Schema simple types (defined in any schema, not just the base one) inherit
from anyType with a set of facets constraining the text. A full hierarchy can be found here.


http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
http://avro.apache.org/docs/1.7.6/spec.html#schema_primitive
https://issues.apache.org/jira/browse/AVRO-1402
http://www.w3.org/TR/xmlschema-2/#rf-facets
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

If the XML Schema reader follows the type system up the hierarchy, we only need to map
specific Avro primitives to specific XML Schema simple types. The hierarchy will handle the
rest. These are the proposed mappings for simple types:

Avro string maps to XML Schema anyType as a catch-all.
bytes maps to base64Binary and hexBinary.

float maps to float.

double maps to double.

decimal maps to decimal.
long maps to long and unsignedint.

int maps to int and unsignedShort.
boolean maps to boolean.

null has no mapping.

The facets that each derived type is restricted by has no effect when converting from XML to
Avro. However, these facets will be validated against when converting Avro to XML.

Names and Namespaces
Like Avro complex types, elements and attributes in XML may have a namespace. In contrast,
XML namespaces are URIs, while Avro namespaces are in the Java package-name style. |

propose converting from XML namespaces to Avro namespaces under the following rules:

1. The Host name of the URI is split into its domain-name parts, and reversed.
2. The URI path is appended to the end, replacing */” with “.”

For example, the XML Schema namespace “http://www.w3.0rg/2001/XMLSchema” would
become “org.w3.www.2001.XMLSchema” when generating an Avro record for an element in
that namespace.

Optional Feature: Automatic Map Creation

XML Schema defines an [D attribute type, which “‘uniquely identifies the element that bears it.”

As such, if an element has an attribute of type “ID,” a map can safely be generated with that
attribute’s value as the key and the element record as the value.

Note: Identity constraints also allow attributes to uniquely identify the elements that bear them.
These define a uniqueness constraint on across a scope (a parent element), a selection of


http://www.w3.org/TR/xmlschema-2/#base64Binary
http://www.w3.org/TR/xmlschema-2/#hexBinary
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#double
https://issues.apache.org/jira/browse/AVRO-1402
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#long
http://www.w3.org/TR/xmlschema-2/#unsignedInt
http://www.w3.org/TR/xmlschema-2/#int
http://www.w3.org/TR/xmlschema-2/#unsignedShort
http://www.w3.org/TR/xmlschema-2/#boolean
http://www.w3.org/TR/xmlschema-2/#ID
http://www.w3.org/TR/2000/WD-xml-2e-20000814#id

elements (defined by XPath), and a set of fields defining the unique key. This is much more
difficult to properly represent in Avro, and I do not recommend trying to implement it.

Schema Conversion
The user may not want to transfer the entire XML document over to Avro. The user may wish to
only transfer a simplified schema, or to select specific elements to encode in Avro.

When reading a document, no error will occur if a field name representing an attribute is missing
from the Avro schema, or if not all possible child types are available in the child-element field.
These elements and attributes will just be skipped over.

The user may also provide a schema containing only an array of a union of records representing
the elements to transfer over. If so, the elements will be added to the array as they are
encountered walking through the document, depth-first.

Schema Generation
It will be possible to generate an XML Schema from the Avro Schema, though with a lot of lost
fidelity. The Avro primitive type mapping to XML Schema simple types would be:

® An Avro string maps to XML Schema’s anySimpleType. (anyType is a complex type.)
® bytes maps to base64Binary.
e float maps to float.

® decimal maps to decimal.

® double maps to double.

e Jong maps to long.

® [nt maps to int.

® boolean maps to boolean.

°

null has no mapping, and will be skipped.

Element children are all arrays of unions of types. If one of those types is a string, then the
element has mixed content. The remaining records will be represented as a choice of elements
defined to occur between 0 and unbounded times.

In the case of an Avro map generated from an ID field, there will be no way to reverse-engineer
which record field represents the ID attribute. Likewise, the value of the map will be stored
using the above rules, and the key will be skipped.



Addendum: Doug Cutting recommended storing XML Schema metadata inside the Avro schema

to facilitate lossless conversion back. He provided the example: {"type":"int",

n.an

"xml-schema":"unsignedInt"}

If a URL to the XML Schema was originally provided, we can encode that in the Avro schema
metadata. If not, we can provide enough information in the Avro schema to generate an XML
Schema that would validate all of the same documents that the original XML Schema would
validate.

I propose to store group metadata as JSON objects, each of which with a "type" field containing
the child type: “all,” “choice,” “sequence,” or “element.” Other fields define the minimum and
maximum number of occurrences. For groups, a “value” field is an array of the members of that
group. For elements, the “value” field is the element’s fully-qualified XML name.

Here is an example representation of a sequence that may occur at least 0 times and at most
infinite, and contains only one element, which must occur exactly once.

{ "type": "sequence",
"minOccurs": 0,
"maxOccurs": "unbounded",
"value": [
{ "type": "element",
"minOccurs": 1,
"maxQOccurs": 1,
"value": { "namespace": "http://www.w3.0rg/2001/XMLSchema",

n.n

"localPart": "complexType"

}

Proposed Implementation

Dependencies

® Apache XML Schema 2.1.0: This handles the parsing of the XML Schema.
e JRegex 1.2 0I: This handles regular expression validation when converting Avro to
XML.

Components



XmlDatumWriter: Instance of DatumWriter<org.w3c.dom.Document>. If an XML Schema is
either declared inside the document (via either the “schemalocation” or
“noNamespaceSchemalocation” attributes), or provided in the XmlDatumWriter’s constructor,
that schema will be followed and compared to the output Avro schema. If the output schema
cannot be supported using the rules from either the “Document Representation” section or the
“Schema Conversion” section, an [OException will be thrown.

XmlDatumReader: Instance of DatumReader<org.w3c.dom.Document>. If an XML Schema is
provided in its constructor, the Avro schema and data will be validated against it. If no XML
Schema is provided, one can be automatically generated from the Avro schema via the rules in
the “Schema Generation” section.

Utilities: Any further utility methods and classes required will be kept private to the package,
only available to XmlDatumReader, XmIDatumWriter, and relevant unit tests.


http://www.w3.org/TR/xmlschema-1/#xsi_schemaLocation

