
Evolution of the Web Audio Modules Ecosystem

Michel Buffa​
Université Côte d’Azur​

I3S, CNRS, INRIA
buffa@univ-cotedazur.fr

Shihong Ren​
Shanghai Conservatory of

Music, Université de
Saint-Etienne
shihong.ren

@univ-st-etienne.fr

Tom Burns​
sequencer.party
tom@burns.ca

Antoine Vidal-Mazuy
antoine.vidalma@gmail.com

Université Côte d’Azur​
CNRS, INRIA

Stéphane Letz
Univ Lyon, GRAME-CNCM,

INSA Lyon, Inria, CITI,
EA3720, 69621

Villeurbanne, France
letz@grame.fr

ABSTRACT
The Web Audio Modules (WAM) is a mature proposal for
Web Audio Plugins. Started in 2015 [3, 6, 7, 8], this open
source proposal evolved and reached version 2.0 in 2021
[17]. This resource paper provides an overview of the
evolution of the ecosystem surrounding the WAM standard.
Since V2.0 publication WAM has been the subject of
numerous publications, demonstrations, and presentations
at various conferences such as the Audio Developer
Conference, Sound and Music Computing, Internet of
Sounds, and The Web Conference, to name a few. As a
direct consequence, there is now a large set of WAM-format
plugins and hosts, along with new online tutorials and tools
that facilitate plugin development (online IDEs, etc.), the
vast majority being open source. An initiative called Wam
Community has also emerged to simplify the sharing of
effects and instruments in the WAM format, accompanied
by an API and online tools. New WAM hosts have been
introduced, including two Digital Audio Workstations
(DAWs), collaborative WAM hosts applications for music
creation, and compatible visual programming languages.
Furthermore, the WAM format supports extensions and this
article presents some of the available ones for handling
video, 3D, WebGL shaders, and parameter modulation
between WAMs, among other functionalities.

CCS CONCEPTS
• Software and its engineering → Software organization and
properties → Software system structures → Abstraction,
modeling and modularity

KEYWORDS
Web Audio, Audio Effects and Instruments, plugin
Architecture, Web Standards

1 INTRODUCTION

The official Web Audio Module (WAM) distribution proposes
two complementary SDKs and an abstract API for
developing Web Audio plugins [22]. The SDKs are available
on the official GitHub repository along with some examples 1

of WAM hosts and plugins written using different
approaches (in plain JavaScript, using build systems, 2

written in TypeScript, using some popular frameworks such
as React, or cross compiled in Web Assembly from C++ or
from DSL like Faust or CSound). The SDKs are also
available as npm modules and also hosted directly online 3

on a CDN for a direct inclusion in plain HTML/JS code . 4

4 https://codepen.io/w3devcampus/pen/LYaGzMQ?editors=1010
3 https://www.npmjs.com/settings/webaudiomodules/packages
2 https://github.com/webaudiomodules/wam-examples
1 https://github.com/webaudiomodules, MIT Licence

Since their publications, these resources only had minor
bug fixes and enhancements, highlighting the maturity and
stability of their design and implementation.
However, the feedback that has been collected through the
web audio slack channel, the audio developer discord
server (that has a channel dedicated to web development),
and github issues and comments, showed that there was a
need for more tutorials, for simpler examples and simpler
ways to develop WAM plugins and hosts (aka : better tools,
such as code generators, online IDEs, etc.). Furthermore, in
its official release the WAM standard focused on the
essential features required by plugin and host development,
but it has been designed to support extensions. Rapidly
developers started to propose WAM extensions for
interacting with real time video (webcam), for 3D rendering,
WebGL shader animation (WAM for visualization) and for
adding some extra functionalities to (parameter modulation
between WAMs, etc.).
Section 2 of this paper will present webaudiomodules.com,
the new web site that will act as a hub for the WAM
ecosystem, and focus on Wam-Community, a new initiative
for publishing, sharing and reusing WAMs. Section 3 will
present some tools that ease the development of WAM
hosts and plugins (code generators, online tutorials, online
IDEs). Section 4 will present some remarkable WAM effects
and instruments that have been developed, as well as some
hosts (DAWs etc.). Section 5 will present the WAM
extensions available, as well as how you can learn how to
use them in your own software. Section 6 will present the
perspectives about the future of WAMs and conclude.

2 WEBAUDIOMODULES.COM, WAM
COMMUNITY
For a long time, the webaudiomodules.org website was the
reference center for WAM-related content. Unfortunately,
this site is no longer maintained, and the people currently
involved in the WAM standard do not own the domain. In
the meantime, a new website, webaudiomodules.com, has
been created, bringing together the most relevant WAM
resources. This new domain also hosts online versions of
the SDKs , an API for querying WAM plugins published by 5

the WAM community , and a WAM gallery based on this 6

API, which will facilitate the reuse of existing WAMs.
WAM plugins have been designed so that they can be used
in host software simply by using a JavaScript import on their
URI. Include the SDK, import the URI and you can then
connect the plugin to a Web Audio graph (any instance of
WAM is seen as an AudioNode) and display its graphical
interface (seen as a Web Component aka a simple HTML
div with encapsulated code). This makes it very easy to
reuse Web-hosted WAMs. The Wam Community initiative

6 https://www.webaudiomodules.com/community/plugins.json
5 https://codepen.io/w3devcampus/pen/xxBOvVJ?editors=1010

https://codepen.io/w3devcampus/pen/LYaGzMQ?editors=1010
https://www.npmjs.com/settings/webaudiomodules/packages
https://github.com/webaudiomodules/wam-examples
https://github.com/webaudiomodules
https://www.webaudiomodules.com/community/plugins.json
https://codepen.io/w3devcampus/pen/xxBOvVJ?editors=1010

Evolution of the Web Audio Modules Ecosystem Michel Buffa et Al.

was created to facilitate the publication and sharing of
WAMs, and comprises several tools: 1) a GitHub repository
(https://github.com/boourns/wam-community) with pre-built,
ready-to-use WAMs . Developers can add their own WAMs
by making simple Pull Requests. 2) The
webaudiomodules.com server hosts the plugins published
on the previous repository and offers a REST API to obtain
the list of available WAMs and expose their URIs. 3) An
online gallery (Figure 1) lets you browse WAMs, with a
search engine and filters by category, author, etc.
(https://mainline.i3s.unice.fr/wamGallery/public). It's also
possible to test WAMs online and copy/paste the source
code of a mini WAM host, with several possible options
(Figure 2).

Figure 1: online WAM gallery web application.

Figure 2: The WAM Gallery can run WAMs in demo pages

and generate the source code for a simple host.

3 WAM TOOLS AND TUTORIALS

3.1 The Faust IDE, generating WAM tutorials…
Faust is a popular functional programming language for
DSP programming; thousands of source code for audio
effects, instruments, and more generally DSP algorithms,
filters etc. are available in the open source community, or
included in the distribution and in the online IDE [4, 14]. The
Faust compiler supports exporting to a variety of platforms
and standards, including Web Audio Modules. Since 2014,
Faust DSPs can be compiled to JavaScript-compatible
binary code and dynamically run the DSP within the
browser [5]. In 2022, a new version of the Faust
WebAssembly compiler named faustwasm, which
provides TypeScript and JavaScript wrappers for Faust
DSPs, was released [15]. It allows to generate static
self-contained html pages or JavaScript modules (including
the Faust code as a WebAssembly module and various
additional resources), or even to integrate the libfaust
compiler in applications which need to dynamically compile
and deploy Faust DSP programs. The library can be used
either in Node.js based projects or in web browsers and is
published on NPM. Furthermore, an official online Faust IDE
has been developed since 2019 using modern web
technologies such as WebAssembly and AudioWorklet,
offering various testing, debugging and audio visualization
features, allowing connecting to different kinds of
audio/MIDI inputs and outputs, making easier the
development of wasm WAM plugins, with a standard CSS
based GUI (auto-generated, see Figure 3) or with a custom
GUI that can be designed with an embedded GUI Builder
(Figure 4) [10, 16]. A step by step tutorial about how to build
WAM plugins is available online . Starting from an existing 7

Faust code, it takes a few seconds to execute in the IDE,
verify, export (download as a zip file), publish online, and
run a WAM plugin (Figure 5).

Figure 3: a physical modeled flute in the FAUST IDE.

Based on the faustwasm module, faust2wam has been 8

recently developed: a JavaScript tool that can generate
self-contained Faust WAMs within the Node.js environment,

8 https://github.com/Fr0stbyteR/faust2wam
7 http://tinyurl.com/yckdyax4

2

https://github.com/boourns/wam-community
https://mainline.i3s.unice.fr/wamGallery/public
https://github.com/Fr0stbyteR/faust2wam
http://tinyurl.com/yckdyax4

Evolution of the Web Audio Modules Ecosystem WAC 2024

or dynamically within the browsers. In addition, support has
been added for polyphonic instruments and Faust-based
spectral processors. These new generation targets
(web/wam2-ts, wam2-poly-ts, and wam2-fft-ts) are
now available in the Faust IDE in the Export window.

Figure 4: The same flute with a custom GUI made with the
embedded GUI Builder.

Figure 5: the exported WAM can be used by an external
host, here in codePen . Left with standard CSS-based 9

generated UI, right with a custom GUI.

3.2 Online tutorials
A set of seven tutorials has been published . They show 10

how to load from JavaScript a WAM plugin, attach it to a
web audio graph, how to chain it with other audio modules,
how to perform parameter automation at the frequency rate,
how to send MIDI events to a WAM instrument (using a
WAM virtual piano keyboard, or a piano roll WAM, see

10 Online version: https://wam-examples.vidalmazuy.fr/, also on
GitHub repo: https://github.com/Brotherta/wam-examples

9 https://codepen.io/w3devcampus/pen/YzgwxMV?editors=1010

Figure 6). It also shows how to write an audio player as an
audio worklet using DSP code written in C++ and cross
compiled to web assembly.

Figure 6: one of the online tutorials showing how to use

transport events with a piano roll WAM sending events to a
WAM instrument (Oberheim OB-Xd emulation).

3.3 <wam-host> and <wam-plugin> Web Components
These two Web Components, have been developed to
facilitate the embedding of WAM plugins in a Web Page, for
demo purposes or just for testing if a WAM runs correctly.

<wam-host>
 <wam-plugin src=”URI_OF_WAM1”>
 <wam-plugin src=”URI_OF_WAM2”>
 <wam-plugin src=”URI_OF_WAM3”>
</wam-host>

The previous code will display a chain of three plugins, and
depending on the type of the plugins and their location in
the chain, different elements will be also generated in the
demo page: a virtual MIDI keyboard with a MIDI input
device selection menu (for WAM instruments), an audio
player with a button for activating live input, along with an
audio device selection menu, etc. as shown in the examples
of Figure 5 (see the codepen for source code).

4 Available WAM plugins and hosts overview

Figure 7: the wam-bank pedalboard WAM acts as a

complete pedalboard of audio effects.

https://wam-examples.vidalmazuy.fr/
https://github.com/Brotherta/wam-examples
https://codepen.io/w3devcampus/pen/YzgwxMV?editors=1010

Evolution of the Web Audio Modules Ecosystem Michel Buffa et Al.

The Wam-bank pedalboard (Figure 7) is a WAM that acts
as a host for managing chains of effect plugins. It comes
with a preset manager, with about 30 different plugins
(mainly from the wam-community initiative presented in
section 2), it can filter WAM plugins by category and the set
of plugins is easily extensible. It comes with an online
standalone demo , exposes its URI for making it 11

embeddable in external hosts (like in the Wam-Studio 12

DAW, see next section).

Figure 8: tube guitar amp simulators.

Tube Guitar Amp Simulations: a Vox AC30 and a Marshall
JCM800 (Disto Machine) [1, 2] are already shipped with the
WAM2 distribution and available in the previous pedalboard
along with many classic effect pedals for guitarists. Other
WAM1 amp simulations exist for Metal, Classic Rock/Blues
and Clean sounds [18], with a complete simulation of all the
tube guitar amp stages. Authors are porting them to WAM2
(Figure 8), see demos on video . 13

13 https://mainline.i3s.unice.fr/jaes2023/userTestsAndLatency.html

12 See this codepen example:
https://codepen.io/w3devcampus/pen/BabzVvP

11 https://wam-bank.i3s.univ-cotedazur.fr/

Figure 9: a freesound.org powered sampler.

WAM-sampler (Figure 9) is an open source creative
sampler that comes with a set of standard sounds (drums, 14

piano, hip hop, etc.) triggered by MIDI events (it supports
velocity). Its main originality is that it can also fetch sounds
from the millions available on freesound.org, preview them,
trim them, adjust their ADSR envelope, volume, panning,
and even adjust audio effects before dragging and dropping
them onto the sampler's control pads. Furthermore, a
powerful note set generator can automatically assign the
pads with a sound made up of different notes in a variety of
scales. An online demo and a video presentation is 15

available . 16

Figure 10: a piano roll MIDI sequencer.

Piano Roll (Figure 10) is an open source polyphonic MIDI
piano roll sequence editor. In hosts that support the

16 https://www.youtube.com/watch?v=3jf2KCdwU1A
15 https://codepen.io/w3devcampus/pen/ZEPOgar?editors=1010
14 https://github.com/micbuffa/WAMSampler

4

https://mainline.i3s.unice.fr/jaes2023/userTestsAndLatency.html
https://codepen.io/w3devcampus/pen/BabzVvP
https://wam-bank.i3s.univ-cotedazur.fr/
https://www.youtube.com/watch?v=3jf2KCdwU1A
https://codepen.io/w3devcampus/pen/ZEPOgar?editors=1010
https://github.com/micbuffa/WAMSampler

Evolution of the Web Audio Modules Ecosystem WAC 2024

Patterns WAM Extension, a single Piano Roll WAM instance
can hold multiple pattern clips of varying lengths. MIDI note
events are generated with sample-accurate timing by
sending the WAM note events from within the AudioWorklet.

Figure 11: a live-coding MIDI sequencer.

The WAM Function Sequencer (Figure 11) is an open
source live-coding MIDI sequencer environment developed
to reduce the needed effort for Javascript developers to
iterate on a MIDI sequencer idea. The patch developer
uses Javascript to register a custom interface and code
event handlers, without needing to worry about build
processes or code hosting. In collaborative WAM hosts, the
patch code can be edited simultaneously by multiple
participants.

4.2 Remarquable WAM hosts

Figure 12: CEPHEI: a React-based DAW that supports

WAM effects and instruments.

CEPHEI (Figure 12) is a React based DAW still in the 17

early stage of implementation, by Kevin Chavez (@aykev).
The author focused on GUI and ergonomy. At the time of
writing, the DAW features audio playback, recording,
bouncing, and a chain of audio FX associated with each
track. The author is working on a WebGPU shader to render
out the waveforms at different scales. All track elements are
DOM based (no canvas, track regions are simple html divs,

17 https://pamba-c5951.web.app/

waveforms are CSS backgrounds, etc), an original and
efficient approach.​

Figure 12: Wam-Studio, an open source DAW.

WAM Studio (Figure 12) is an open source, online Digital
Audio Workstation (DAW) developed as a demonstrator of
Web Audio Modules, as well as of recent W3C Web APIs,
such as Web Assembly, Web Components, Web Midi,
Media Devices etc. DAWs are feature-rich software and
therefore particularly complex to develop in terms of design,
implementation, performances and ergonomics. Very few
commercial online DAWs exist today and the only
open-source examples lack features (no support for
inter-operable plugins, for example) and do not take
advantage of the recent possibilities offered by modern
W3C APIs (e.g. AudioWorklets/Web Assembly). See [11] for
a survey of online Digital Audio Workstations (DAWs).
In Wam-Studio, each audio track is a WAM processor (i.e a
subclass of an AudioWorkletProcessor) for playing or
recording audio buffers. The main reason is that when both
host and plugins are implemented this way (as
Wam-Processor/AudioWorklet) then the WAM SDK provides
under the hood optimized host/plugin communications that
avoid crossing the audio thread. This way, parameter
automation at the sampling rate, even with hundreds of
parameters, can be done simply using Shared Array
Buffers. Other events can also be sent this way without
crossing the main/audio thread barrier, avoiding the need to
schedule midi events in advance, as described in the
famous “A tale of two clocks” Chris Wilson article . 18

In addition, Wam-Studio is also a good implementation
example about how to record audio tracks in sync with other
tracks playing at the same time. In [16] authors describe
how they calibrate the input latency and perform latency
compensation, as well as how they reused Paul Adenot’s
ring buffer implementation in a multi-thread architecture for 19

a robust recording solution: i.e no glitches if the UI is
resized or cpu stressed, while recording a waveform is
redrawn regularly as the recording progresses, etc. 20

Wam plugins can be associated with tracks too: a rich
pedalboard handles audio FX chains, featuring a preset
manager and filters for managing a large set of WAM

20 Video: https://www.youtube.com/watch?v=0r6pox2eQH0
19 https://blog.paul.cx/post/a-wait-free-spsc-ringbuffer-for-the-web/
18 https://web.dev/articles/audio-scheduling

https://pamba-c5951.web.app/
https://blog.paul.cx/post/a-wait-free-spsc-ringbuffer-for-the-web/
https://web.dev/articles/audio-scheduling

Evolution of the Web Audio Modules Ecosystem Michel Buffa et Al.

plugins (standard audio effects, original ones), and can be
used standalone or embedded in other WAM hosts.
The DAW is online and the GitHub repository contains 21 22

both front-end and back-end source code, as well as a
Docker image configuration file, making the deployment of a
new instance easy. Wam-studio project management
source code (front and back-end) shows how a large set of
.wav files, along with the state of the different components
used by a project, can efficiently be saved or restored from
a remote server. Wam-Studio can render/bounce the final
mix or individual tracks using OfflineAudioContext, applying
effects and automation.

Figure 13: Attune specific macro editor.

Figure 14: Simplified view of Attune allowing DHH users to

adjust sound properties.

Attune is an open source Wam-Studio fork that is being 23

used by researchers from the REMI group at
CCARMA/Stanford to Empower Cochlear Implant Users.
With Attune, researchers can associate individual tracks
with macros that control multiple WAM plugin parameters at
once (Figure 14). While programming macro controls and
customizing track parameters might have many applications
in the music industry, they also present an opportunity to
afford D/deaf or Heard-of-Hearing (DHH) users greater
control over their music listening. In [12], authors present a

23 https://github.com/Brotherta/wam-studio/tree/stanford-prototype

22 https://github.com/Brotherta/wam-studio
21 https://wam-studio.i3s.univ-cotedazur.fr/

case study illustrating how this tool could be used by
Hard-of-Hearing users to modify individual musical
elements in a multi-track listening context to create a more
enjoyable listening experience. Figure 14 presents the
simplified view for DHH users.

Figure 15: sequencer party, a realtime collaborative musical

experience.

Figure 16: sequencer.party menu for adding a WAM plugin
(sequencer, instrument, effect, display) to a track/screen.

Sequencer.Party (Figure 15) is a realtime collaborative 24

audio/visual platform built entirely out of WAMs. Users work
together in real-time sessions, and can share WAM presets
and projects publicly on the website. It comes with its own
collection of open-source WAMs , and users may load 25

remote WAMs by URI. An online integrated menu exposes
a categorized list of plugins available,by querying the
wam-community REST API (Figure 16).

25 https://github.com/boourns/burns-audio-wam
24 https://sequencer.party

6

https://github.com/Brotherta/wam-studio/tree/stanford-prototype
https://github.com/boourns/burns-audio-wam
https://sequencer.party

Evolution of the Web Audio Modules Ecosystem WAC 2024

Figure 17: a WAM in Sequencer Party that can animate 3D
scenes using the ThreeJS library. It includes a Visual Studio
component for live coding the 3D rendering that can react to

the input audio signal.

The WAM Extension system: Tom Burns, author of
sequencer party, is a core member of the group who
designed and published the WAM SDK. He designed the
WAM extension system, and some of the open source
plugins proposed in sequencer.party are good
demonstrators of video extensions, WebGL extensions
(Figure 17), modulation WAMs (WAMs that modulate other
WAM parameters), etc. See section 5 about
Wam-extensions.

Figure 18 : WebAudioModules in a JSPatcher patch.

Figure 19: WAM plugins in the JSPatcher audio editor.

JSPatcher [9, 13] is an open source, online visual
programming language in the style of Max/PureData for 26

26 https://fr0stbyter.github.io/jspatcher/dist/

interactive programming, audio processing, and realtime
multimedia projects. It can be used as a graph editor for
WebAudio nodes and WAMs. (Figure 18). It also comes
with a powerful audio buffer editor that can use WAM
plugins to apply effects to buffer regions (Figure 19).
Figure 20 shows an example in JSPatcher where a spectral
denoiser WAM plugin is loaded from a URI. The plugin
processes the microphone input signal and two
spectroscopes display the result.

Figure 20: JSPatcher - a Max/MSP-like host - with some

WAMs (a denoiser on the left and some audio visualizations
on the right).

5 WAM EXTENSIONS
WAM Extensions are optional additions to the WAM 2.0 27

API that add tighter integration between WAM plugin and
host, better solving user interface problems and creating
new use-cases for WAMs to solve.

5.1 EXAMPLE WAM EXTENSIONS

Figure 21: Piano Roll with note names, ​
demonstrating the Notes WAM extension

27 https://github.com/boourns/wam-extensions

https://fr0stbyter.github.io/jspatcher/dist/
https://github.com/boourns/wam-extensions

Evolution of the Web Audio Modules Ecosystem Michel Buffa et Al.

The Notes extension allows one WAM to publish a list of
relevant notes with names, and other connected WAMs to
receive the note list. This enables a better user interface
when sequencing typical drum machines or samplers where
only certain MIDI notes can be received (Figure 21).

Figure 22: Butterchurn plugin demonstrating the Video

WAM extension.

The Video extension adds video generation and processing
capabilities to the WAM ecosystem. The WAM host
manages a WebGL2 context, and plugins register render
handlers to generate and process WebGL2 textures. Video
WAMs can also process audio, allowing audio reactivity or
simultaneous audio/video stream generation.

Figure 23: Drum Sampler WAM using the Asset Extension

to allow the host to control asset load/save.

With the Asset extension, WAM hosts control asset loading
and saving. Individual WAM plugins can rely on the host for
cloud storage, and users can manage all files related to a
musical project in the host without having each WAM plugin

store files in separate cloud services or accounts (Figure
23).

Figure 24: Randomizer plugin uses the Modulation Target

extension to randomize the Synth-101 patch.

The ModulationTarget extension enables plugin developers
to create plugins whose purpose is to modulate, or control,
the parameters of another WAM plugin (Figure 24). WAM
Modulation plugins exist for parameter randomization,
parameter sequencing, envelope following of an audio
signal and LFO control. By using modulation WAMs, hosts
enable deep parameter automation similar to modular
synthesis.

6 CONCLUSION / DISCUSSION
Today, Web Audio Modules is the principal Web Audio
plug-in system maintained and in constant evolution. The
examples proposed when it was launched in 2021 showed
great potential, but at the time the lack of tutorials,
documentation, development tools and a reference website
made the first steps difficult. Today this has changed, and
this article has summarized some of the most remarkable
contributions from which the Audio web developer
community can benefit. A tool like Faust IDE lets you
design, test and publish polyphonic WAM instruments or
audio effects very quickly. The Wam-community initiative is
also particularly important, as it facilitates the exchange and
reuse of existing plugins, and we hope that other
developers will contribute to its content. Several online
DAWs are WAM-compatible, and at least one is open
source and uses WAM in its core design (Wam-Studio).
Examining its source code is a good way to understand how
to design and implement basic mechanisms such as robust
recording in sync with other audio tracks, latency
compensation, project rendering/bouncing, load/save
projects with large audio content, plugin states, parameter
automation etc.
Last but not least, WAM's extension mechanism also opens
up many new perspectives, notably by introducing the
multimodal aspect (audio and image) that was missing from

8

Evolution of the Web Audio Modules Ecosystem WAC 2024

the initial proposal. New types of applications will certainly
emerge, such as the collaborative application
sequencer.party, the first host application to take advantage
of WAM extensions. ​

REFERENCES
[1] M. Buffa and J. Lebrun. Real time tube guitar amplifier simulation using

WebAudio. Web Audio Conference (WAC 2017). London, UK.
[2] M. Buffa and J. Lebrun. Web Audio Guitar Tube Amplifier vs Native

Simulations. Web Audio Conference (WAC 2017). London, UK.
[3] J. Kleimola and O. Larkin. Web audio modules. 12th Sound and Music

Computing Conference (SMC15). Maynooth, Ireland.
[4] Y. Orlarey, D. Fober, and S. Letz.. Syntactical and Semantical aspects of

Faust. Soft Computing 8, 9 (2004). 623–632.
[5] S. Letz, Y. Orlarey, and D. Fober. Compiling Faust Audio DSP Code to

WebAssembly.Web Audio Conference (WAC 2017). London, UK.
[6] M. Buffa, J. Lebrun, J. Kleimola, O.Larkin, and S. Letz. Towards an open

Web Audio plugin standard.2018, April. The Web Conference 2018,
Lyon, France (pp. 759-766).

[7] M. Buffa, J. Lebrun, J. Kleimola, O.Larkin, G. Pellerin, S. Letz.. WAP:
Ideas for a Web Audio plug-in standard. Web Audio Conference (WAC
2018), Berlin, Germany.

[8] M. Buffa, J. Lebrun, S. Ren, S. Letz, Y. Orlarey, and al.. Emerging W3C
APIs opened up commercial opportunities for computer music
applications. The Web Conference 2020 - DevTrack, Apr 2020, Taipei.

[9] S. Ren, L. Pottier, M. Buffa. Build WebAudio and JavaScript Web
Applications using JSPatcher: A Web-based Visual Programming Editor.
Web Audio Conference 2021, Barcelona, Spain. ⟨hal-03519504⟩

[10] S. Ren, S.Letz, Y. Orlarey, R. Michon, D. Fober, et al. FAUST online IDE:
dynamically compile and publish FAUST code as WebAudio Plugins. 5th
Web Audio Conference, WAC 2019 Trondheim, Norway.

[11] M. Buffa, and A. Vidal-Mazuy. "WAM-studio, a Digital Audio Workstation
(DAW) for the Web." In Companion Proceedings of the ACM Web
Conference 2023, pp. 543-548. 2023.

[12] M. Buffa, A. Vidal-Mazuy, L. May & M. Winckler, (2023, August).
WAM-Studio: A Web-Based Digital Audio Workstation to Empower
Cochlear Implant Users. In IFIP Conference on Human-Computer
Interaction (pp. 101-110). Cham: Springer Nature Switzerland.

[13] S. Ren, L. Pottier, M. Buffa, and Y. Yu, 2022. JSPatcher, a Visual
Programming Environment for Building High-Performance Web Audio
Applications. Journal of the Audio Engineering Society, 70(11),
pp.938-950.

[14] Y. Orlarey, D. Fober, and S. Letz. FAUST : an Efficient Functional
Approach to DSP Programming. In E. D. France, editor, New
Computational Paradigms for Computer Music, pages 65–96.
Paris,France, Jan. 2009.

[15] S. Ren, S. Letz, Y. Orlarey, D. Fober, R. Michon, M. Buffa, L. Pottier, and
Y. Yu. Modernized Toolchains to Create JSPatcher Objects and Web
Audio Modules from Faust Code. In Proceedings of the International Web
Audio Conference, Cannes, France, July 2022. Université́ e Côte d’Azur.

[16] S. Ren, S. Letz, Y. Orlarey, R. Michon, D. Fober, M. Buffa, J. Lebrun.
Using Faust DSL to develop custom, sample accurate DSP code and
audio plugins for the Web browser. Journal of the Audio Engineering
Society. 2020 Nov 30;68(10):703-16.

[17] M. Buffa, S. Ren, O. Campbell, T. Burns, S. Yi, J. Kleimola, O. Larkin.
Web Audio Modules 2.0: An Open Web Audio Plugin Standard.
InCompanion Proceedings of the Web Conference 2022 Apr 25 (pp.
364-369).

[18] M. Buffa, J. Lebrun. Rocking the Web With Browser-Based Simulations
of Tube Guitar Amplifiers. Journal of the Audio Engineering Society. 2023
Nov 16;71(11):753-68.

https://hal.inria.fr/hal-03519504

	3 WAM TOOLS AND TUTORIALS
	3.1 The Faust IDE, generating WAM tutorials…
	3.2 Online tutorials
	3.3 <wam-host> and <wam-plugin> Web Components

	4 Available WAM plugins and hosts overview
	4.2 Remarquable WAM hosts
	5 WAM EXTENSIONS
	5.1 EXAMPLE WAM EXTENSIONS
	6 CONCLUSION / DISCUSSION
	REFERENCES

