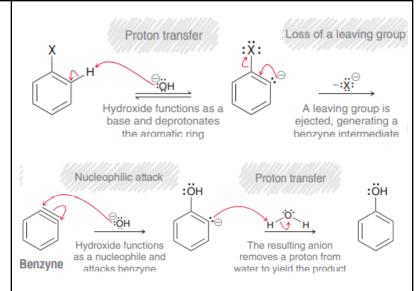
Reference Sheet 5: Organic Chemistry II Mechanisms Part III


	T	T
Reaction(s) & Example(s)	Reagent(s)	Example Mechanism(s)
Nucleophilic Aromatic Substitution An aromatic compound is treated with a	1) NaOH, 70°C → 2) H ₃ O ⁺	:Ö:
strong nucleophile (hydroxide), which displaces a leaving group (bromide):	2) 1130	Nucleophilic attack
Br $\xrightarrow{1) \text{ NaOH, } 70^{\circ}\text{C}}$ $\xrightarrow{1) \text{ NaOH, } 70^{\circ}\text{C}}$ $\xrightarrow{\text{NO}_2}$		In the first step, the aromatic ring
Notably, there are three criteria in order for this to occur: 1. A ring must be electron poor; (a		is attacked by a nucleophile, forming the intermediate Meisenheimer complex
ring must be substituted with a strong electron withdrawing group, typically a nitro group). 2. There must be a good leaving group		:Ö~, Ö.;
(usually a halide). 3. The leaving group must be positioned ORTHO or PARA to the withdrawing group. (If the leaving group is meta to the nitro group, the reaction is not observed).		Loss of a leaving group
Also, consider that when hydroxide is used as the attacking nucleophile, the resulting product is a substituted phenol, which will be deprotonated by hydroxide to give a phenolate ion. Therefore, acid is required in a		:ÖH :ÖH :ÖH :ÖH :ÖH :ÖH in the second step, a leaving group is expelled to restore aromaticity
separate step to protonate the phenolate ion and obtain a neutral product:		Meisenheimer complex
Br SiOH SiOH SiOH SiOH SiOH SiOH SiOH SiOH		Note: Consider that the OH group on the substance made in the first step gets deprotonated. In the second step, the negatively charged oxygen gets protonated by H ₃ O ⁺ .
NO_2 NO_2 NO_2		(See protonation mechanism in Reference Sheet 3 for the second part of the mechanism).

Elimination Addition: Adding a Hydroxyl Group

One could add an OH group to a halobenzene ring that doesn't contain a strong electron withdrawing group; (noting that significantly harsher conditions are required here):

Addition of an OH:

- 1) NaOH, 350°C
- 2) H₃O⁺

Elimination Addition of an Amino Group

Adding an NH₂ group to a halobenzene ring could occur much better here compared to the addition of a hydroxyl group; nevertheless, if there are any additional groups attached to the halobenzene ring, this causes multiple products to form:

CI
$$\begin{array}{c}
\text{NH}_{2} \\
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2} \\
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2} \\
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2}$$

$$\begin{array}{c}
\text{NH}_{2}
\end{array}$$

Notably, the products above are identical, but the mechanisms of each product differs (see mechanism example on the right).

$$\begin{array}{c}
\text{CI} \\
& 1) \text{ NaNH}_2, \text{ NH}_3 (I) \\
\hline
& 2) \text{ H}_3 \text{O}^+
\end{array}$$

Addition of an amino group:

1) NaNH₂, NH₃ (liquid)

$$\rightarrow$$
 2) H_3O^+

CI
$$\frac{1) \text{ NaNH}_2, \text{ NH}_3}{(l)}$$
 $\frac{1) \text{ NaNH}_2, \text{ NH}_3}{(l)}$ $\frac{1}{2} \text{ Holder}$ $\frac{1}{2} \text{$

N/A #(See mechanism in the "Reaction(s) and Example(s)"). Benzyne Reaction Benzyne is allowed to react with a diene via a Diels Alder Reaction: Benzyne Furan Cycloadduct Nucleophilic Addition upon a Carbonyl Basic Nucleophilic Addition: Basic Conditions w/ Carbonyl: Conditions w/ If the nucleophile is strong enough to Carbonvl: **Nucleophilic attack** attack and **NOT** a good leaving group, then the full addition will occur: Strong Nucleophile The carbonyl group is attacked by a nucleophile, forming an anionic intermediate Acidic Conditions w/ Proton transfer Notably, the reaction above will be Carbonyl: under basic conditions. 1) Acid (A-H) The anionic intermediate However, with a weak nucleophile, the is protonated upon treatment presence of an acid makes the carbonyl 2) Weak with a mild proton source more attractive to the nucleophile so the Nucleophile full addition occurs: Nucleophilic Addition: Acidic Conditions w/ Carbonyl: Proton transfer The carbonyl group is first protonated, rendering it even more electrophilic Nucleophilic attack The protonated carbonyl group is then attacked by a nucleophile

Hydrate Formation

When an aldehyde or ketone is treated with water, the carbonyl group can be converted into a hydrate. This could be effectively achieved via Base-Catalyzed Hydration:

Note: Under basic conditions, a mechanism will only be reasonable if it avoids the use or formation of strong acids (only weak acids can be employed).

This could also be achieved by Acid-Catalyzed Hydration:

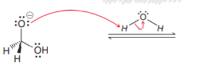
Note: Under acidic conditions, a mechanism will only be reasonable if it avoids the use or formation of strong bases (only weak bases can be employed).

Base-Catalyzed Hydration:

- 1) NaOH →
- 2) H₂O

Acid-Catalyzed Hydration:

- 1) H_3O^+
- 2) H₂O


Base-Catalyzed Hydration:

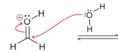
Nucleophilic attack

The carbonyl group is attacked by hydroxide, forming an anionic intermediate

Proton transfer

The anionic intermediate is protonated by water to form the hydrate

Acid-Catalyzed Hydration:


Proton transfer

$$\begin{array}{c|c} H & \stackrel{H}{\longleftarrow} \\ & \stackrel{\downarrow}{\longrightarrow} \end{array}$$

The carbonyl group is protonated, rendering it more electrophilic

Nucleophilic attack

Proton transfer

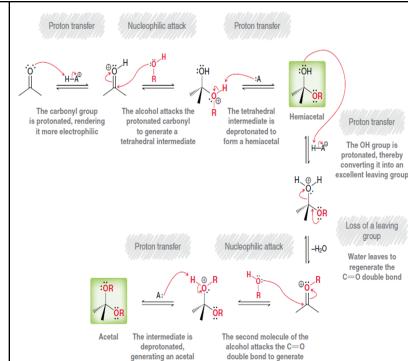
The protonated carbonyl group is attacked by water, forming an oxonium intermediate

The oxonium intermediate is deprotonated by water to form the hydrate

Acetal Formation

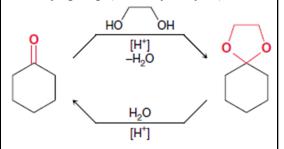
In acidic conditions, an aldehyde or ketone will react with two molecules of alcohol to form an acetal:

Note: One could use an acetal to selectively protect an aldehyde or ketone from reacting in the presence of other electrophiles.


Ketone or Aldehyde w/ Alcohol:

[H⁺]

*Note: [H⁺] is a Proton Source.

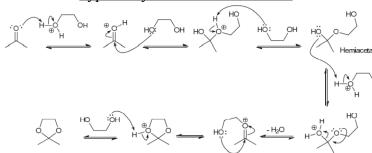

OR

 H_3O^+

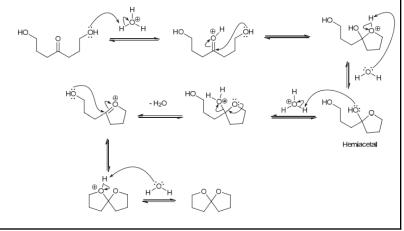
Cyclic Acetal Formation

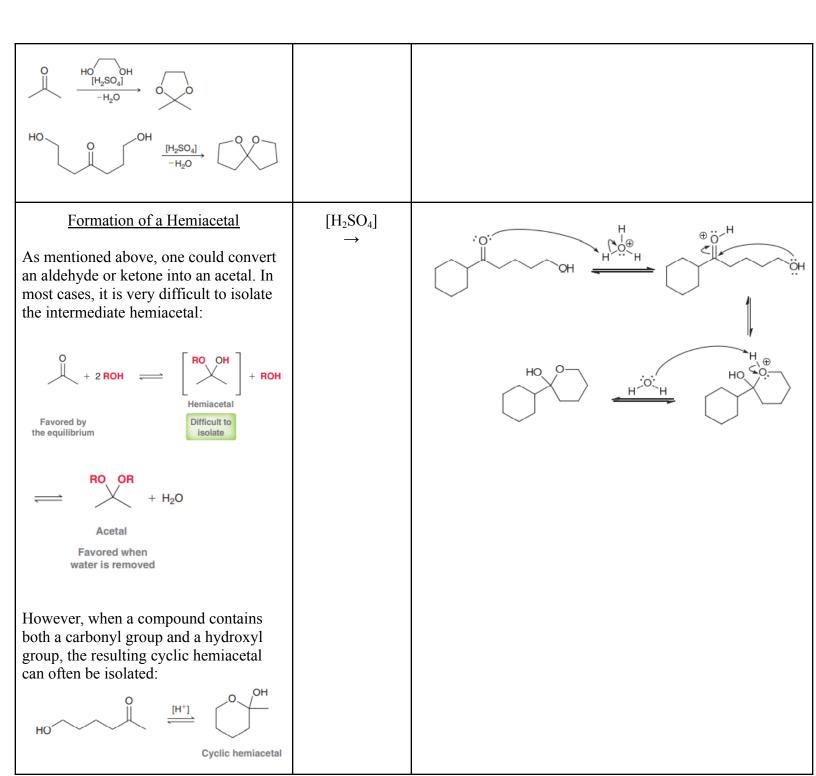
Ethylene glycol can be used to convert an aldehyde or ketone into an acetal. The acetal group can be used to protect aldehydes and ketones. The acetal group is stable to basic conditions, but is removed when subjected to aqueous acidic conditions to regenerate the carbonyl group (AKA hydrolysis):

Note: This process is reversible!!! (Acetals act as protecting groups of ketones and aldehydes from reagents like LAH). :O

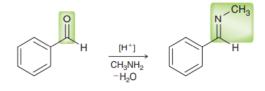

Typical Cyclic Acetal Formation:

Intramolecular Cyclic Acetal Formation:


 $[H_2SO_4]$


Typical Cyclic Acetal Formation:

another tetrahedral intermediate


Intramolecular Cyclic Acetal Formation:

Formation of an Imine and an Enamine

In mildly acidic conditions, an aldehyde or ketone will react with a primary amine to form an imine (compounds that possess a C=N double bond):

It is essential to note that one could also form an imine using a methyl amine (NH₃) as well.

However, if one were to utilize a secondary amine instead of a primary amine, one would form an enamine instead:

Many different compounds of the form RNH2 will react with aldehydes and ketones, including compounds in which R is not an alkyl group. In the following examples, the R group of the amine has been replaced with a group that has been highlighted in red:

Formation of an Imine:

#See reagents below*

[H⁺] (**OR** [TsOH])

Primary Amine
(OR Methyl
Amine)

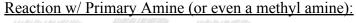
Formation of an Enamine:

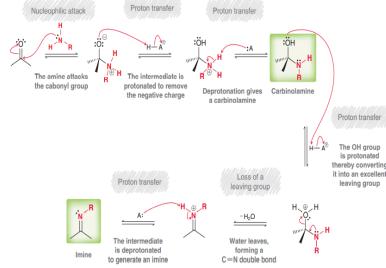
#See reagents below*

 $[H^{+}] (\mathbf{OR}$ $[TsOH]) \rightarrow$ Secondary

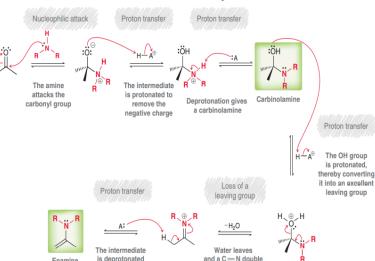
Formation of an

Oxime:


Amine


 $[H^+]$ (**OR** [TsOH]) \rightarrow OH-NH₂

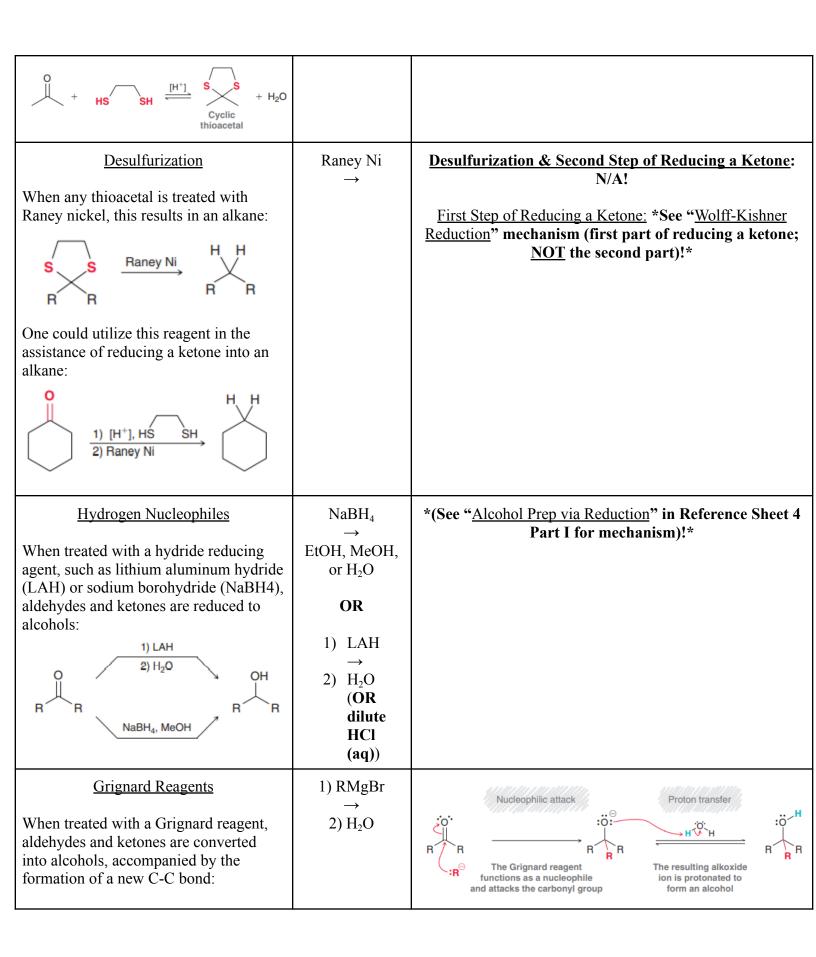
Formation of a Hydrazone:

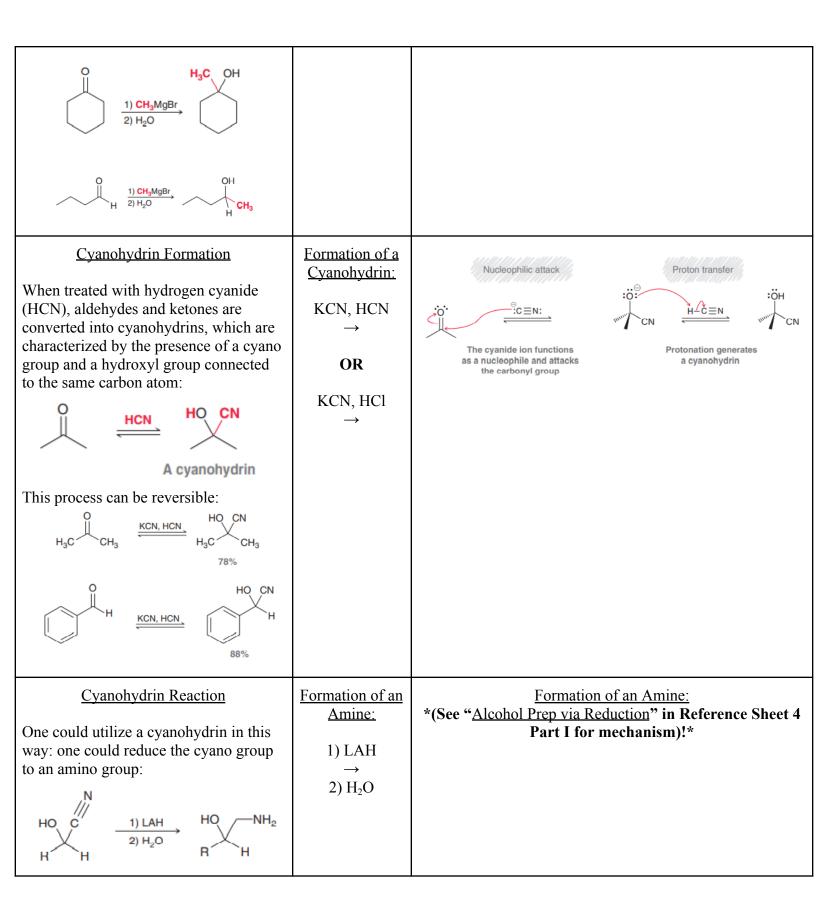

 $[H^+]$ (**OR** [TsOH]) \rightarrow H_2N-NH_2

#(Note: The mechanism requires an acid catalyst. Note that the optimal

Reaction w/ Secondary Amine:

Formation of an Oxime: N/A


bond forms


to generate an enamine

Formation of a Hydrazone: N/A

	pH to achieve a fast reaction is around 4 or 5).	
Wolff-Kishner Reduction	KOH →	Reducing a Ketone: Part 1:
Here, hydrazones are readily reduced under strongly basic conditions (converting a hydrazone to an alkane): NNH2 KOH/H2O Heat (82%)	H ₂ O, heat	
One could also use the Wolff-Kishner Reduction to assist in converting a		$R_1 \stackrel{\frown}{\nearrow} R_2$
ketone into an alkane:		Part 2:
1) [H ⁺], H ₂ N-NH ₂ , +H ₂ O 2) KOH / H ₂ O, heat + N ₂		*Note that the second part of the mechanism (converting the hydrazone into an alkane) is the Wolff-Kishner Reduction Mechanism):
		$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$R_1 ightharpoonup R_2 ightharpoonup R_1 ightharpoonup R_2 ightharpoonup R_3 ightharpoonup R_4 ightharpoonup R_2 ightharpoonup R_3 ightharpoonup R_4 ightha$

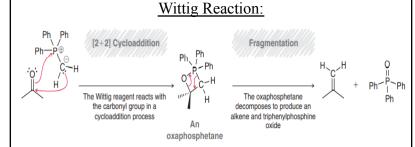
Hydrolysis of Acetals Reacting an acetal with aqueous acid results in the corresponding aldehyde or ketone: ROOOR + H2O	H_3O^+ \rightarrow	Proton transfer Loss of a leaving group Acetal The carbonyl group is protonated, rendering it more electrophilic Ro: OR H H H RO: OH H
Hydrolysis of Imines and Enamines Imines and enamines also undergo hydrolysis when treated with aqueous acid, and the red wavy lines (below) indicate the bonds that undergo cleavage: Mathematical Hydrolysis Hydrolysis	H_3O^+ \rightarrow	^(See "Hydrolysis of Acetals" for mechanism example)^
In acidic conditions, an aldehyde or ketone will react with two equivalents of a thiol to form a thioacetal:	Ketone or Aldehyde w/ Thiol: H ₃ O ⁺ → Typical Cyclic Thioacetal Formation:	Thioacetal Formation: *(See "Acetal Formation" for mechanism).* Cyclic Thioacetal Formation: *(See "Cyclic Acetal Formation" for mechanism).*

Wittig Reaction

This reaction can be used to convert a ketone into an alkene by forming a new C-C bond at the location of the carbonyl group:

Notably, one could prepare a Wittig Reagent by treating triphenylphosphine with an alkyl halide followed by a strong base:

Wittig Reaction (given a ketone):

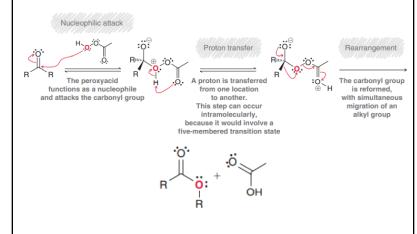

 $\begin{array}{c} RPPh_3 \\ \rightarrow \end{array}$

Wittig Reagent (AKA a ylide):

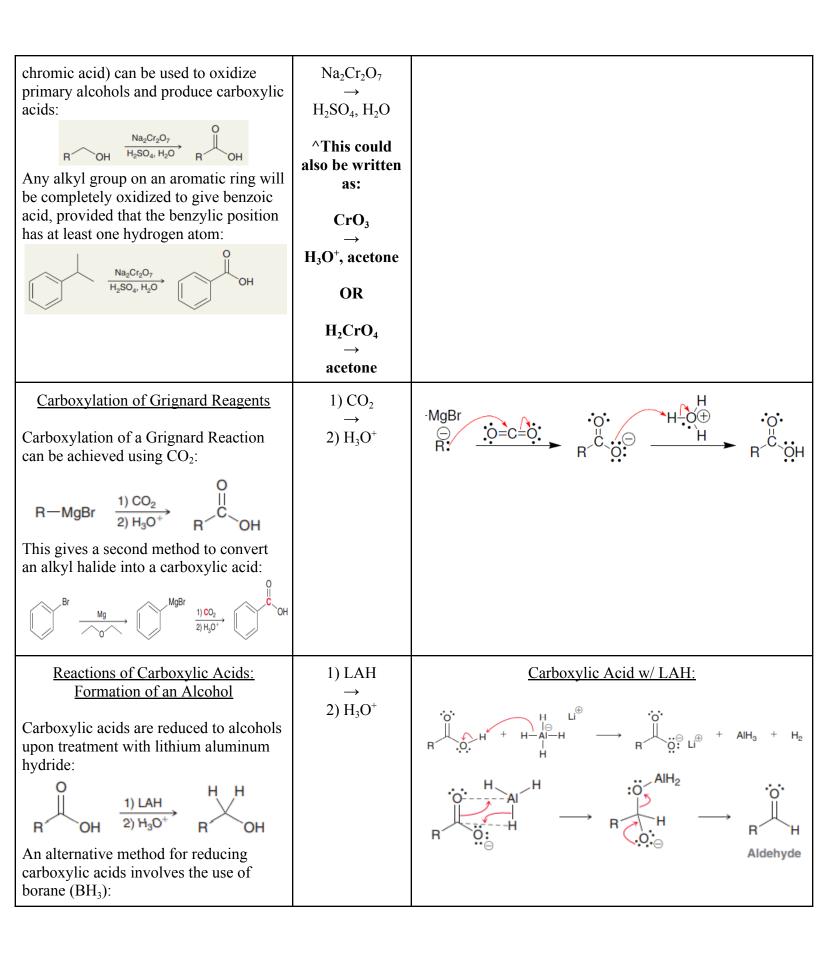
- 1) CH_3I \rightarrow
- 2) BuLi

Formation of a Wittig Reagent:

Triphenylphosphine


Baeyer-Villiger Oxidation of Aldehydes and Ketones

When treated with a peroxy acid, ketones can be converted into esters via the insertion of an oxygen atom:


Additionally, treatment of a cyclic ketone with a peroxy acid yields a cyclic ester, or lactone.

When an unsymmetrical ketone is treated with a peroxy acid, formation of the ester is regioselective:

RCO₃H

Here, in this case, the oxygen atom is inserted on the left side of the carbonyl group, rather than the right side. This occurs because the isopropyl group migrates more rapidly than the methyl group during the rearrangement step of the mechanism. The migration rates of different groups, or migratory aptitude, can be summarized as follows: H > 3° > 2°, Ph > 1° > methyl		
Formation of a Carboxylate Salt Treatment of a carboxylic acid with a strong base, such as sodium hydroxide, yields a carboxylate salt: ORDER H + Na SOH - ROW NA + H2O. A carboxylate salt (Notably, in water, the equilibrium generally favors the acid).	NaOH →	*(See mechanism on the left)!*
Formation of Carboxylic Acids Oxidative cleavage will break a C=C triple bond forming two carboxylic acids: $R = R \xrightarrow{1)O_3} HO O OH$ $R = R \xrightarrow{1)O_4} HO OH$ $R = R OH$ A variety of strong oxidizing agents (i.e.	1) O_3 \rightarrow 2) H_2O OR 1) KMn O_4 \rightarrow 2) heat OR	N/A!

(Note: Reduction with borane is often preferred over reduction with LAH, because borane reacts selectively with a carboxylic acid group in the presence of another carbonyl group. If the following reaction were performed with LAH instead of borane, both carbonyl groups would be reduced:

$$H_3C$$
 OH $BH_3 \cdot THF$ H_3C (80%)

$\begin{array}{c} \vdots \\ \vdots \\ R \\ H \\ H \\ H \\ H \end{array}$

Carboxylic Acid w/ BH₃: N/A!

Nucleophilic Acyl Substitution

When a nucleophile attacks a carboxylic acid derivative (given that carboxylic acid derivatives possess a heteroatom that can function as a leaving group), a reaction can occur in which the nucleophile replaces the leaving group (Z):

Note that one **cannot** use an aldehyde or a ketone in this reaction!!!

*Also, see examples of basic, acidic, and neutral conditions of different Nucleophilic Acyl Substitution reactions.

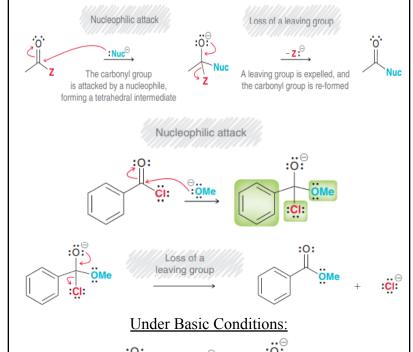
#DO NOT draw S_N2 mechanisms for any of these reactions!!!

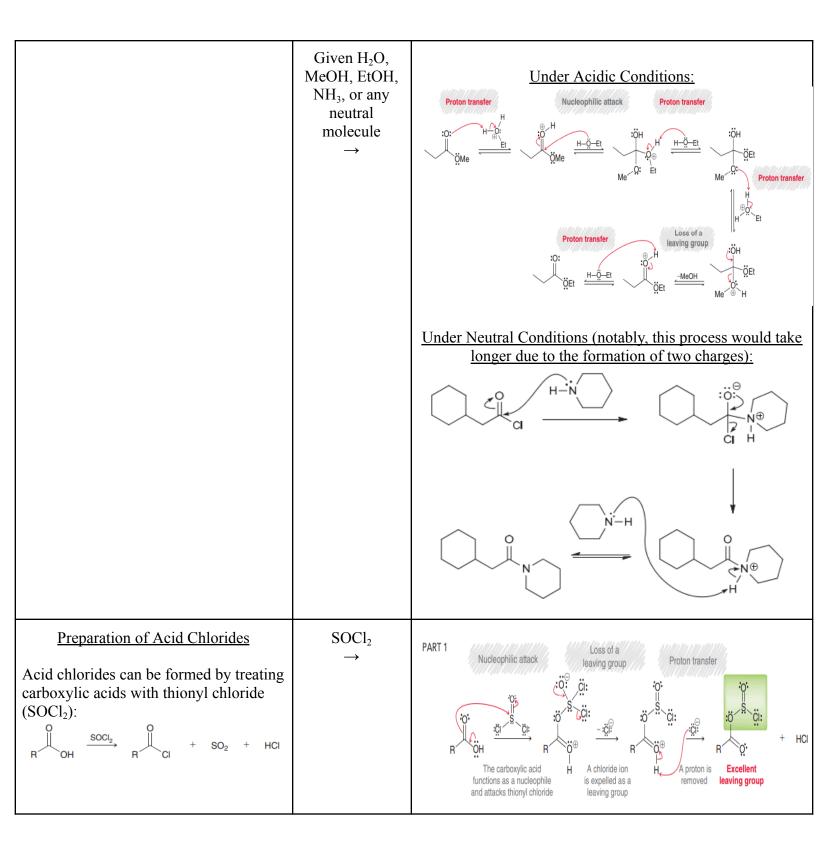
Given a Carboxylic Acid Derivative:

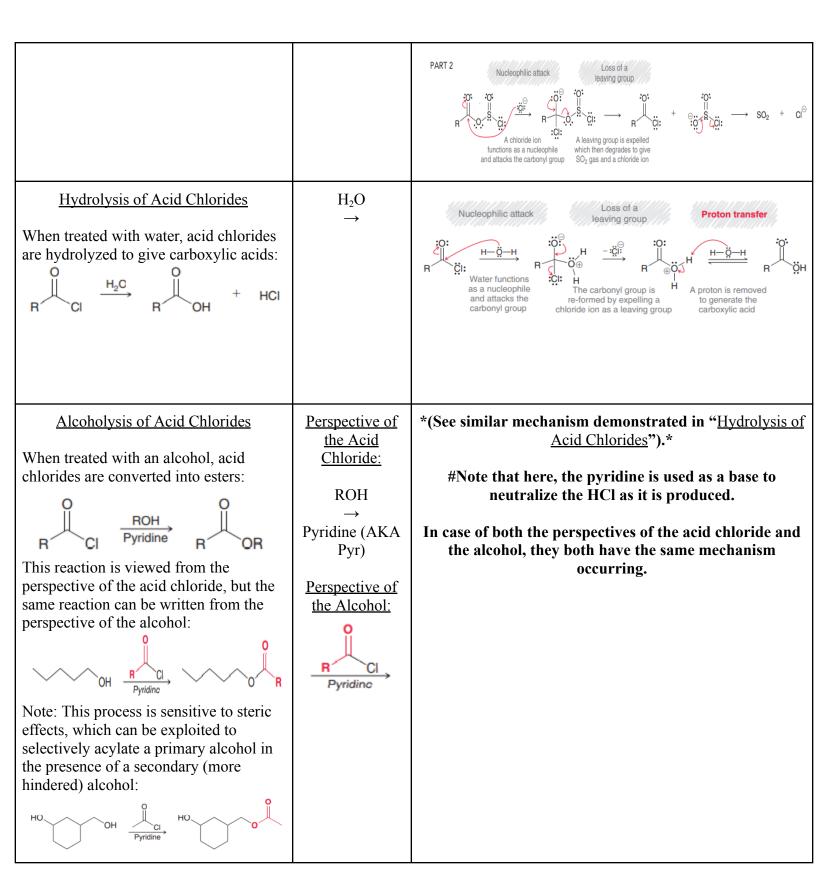
Strong
Nucleophile
(See Reference
Sheet 5 for a
list of Strong
Nucleophiles).

OR

NaOH


OR


(Given H₂O, MeOH, EtOH, (etc)):


 $[H^+]$

OR

Typical Nucleophilic Acyl Substitution Reaction Mechanism Examples:

Aminolysis of Acid Chlorides

When treated with ammonia, acid chlorides are converted into amides:

Depending upon what product one desires to make given an acid chloride:

NH₃ (methyl amine)

NRH₂ (primary amine)

> NR₂H (secondary amine)

(See similar mechanism demonstrated in "Hydrolysis of Acid Chlorides").

(Note: Pyridine is not used in this reaction, because ammonia itself is a sufficiently strong base to neutralize the HCl as it is produced. For this reaction, two equivalents of ammonia are necessary: one for the nucleophilic attack and the other to neutralize the HCl. This reaction also occurs with primary and secondary amines to produce N-substituted amides.)

Typical Reduction of Acid Chlorides

When treated with lithium aluminum hydride, acid chlorides are reduced to give alcohols:

(The reaction between an acid chloride and LAH cannot be used to produce an aldehyde. Using one equivalent of LAH simply leads to a mess of products. Producing the aldehyde requires the use of a more selective hydride-reducing agent (i.e. lithium tri(t-butoxy) aluminum hydride)) that will react with acid chlorides more rapidly than aldehydes.)

1) xs LAH 2) H₂O

Nucleophilic Loss of a leaving attack LAH delivers a The carbonyl nydride ion, which group is re-formed attacks the carbonyl group a chloride ion as a leaving group Proton transfer After the reaction is complete, the alkoxide ion is protonated with an acid

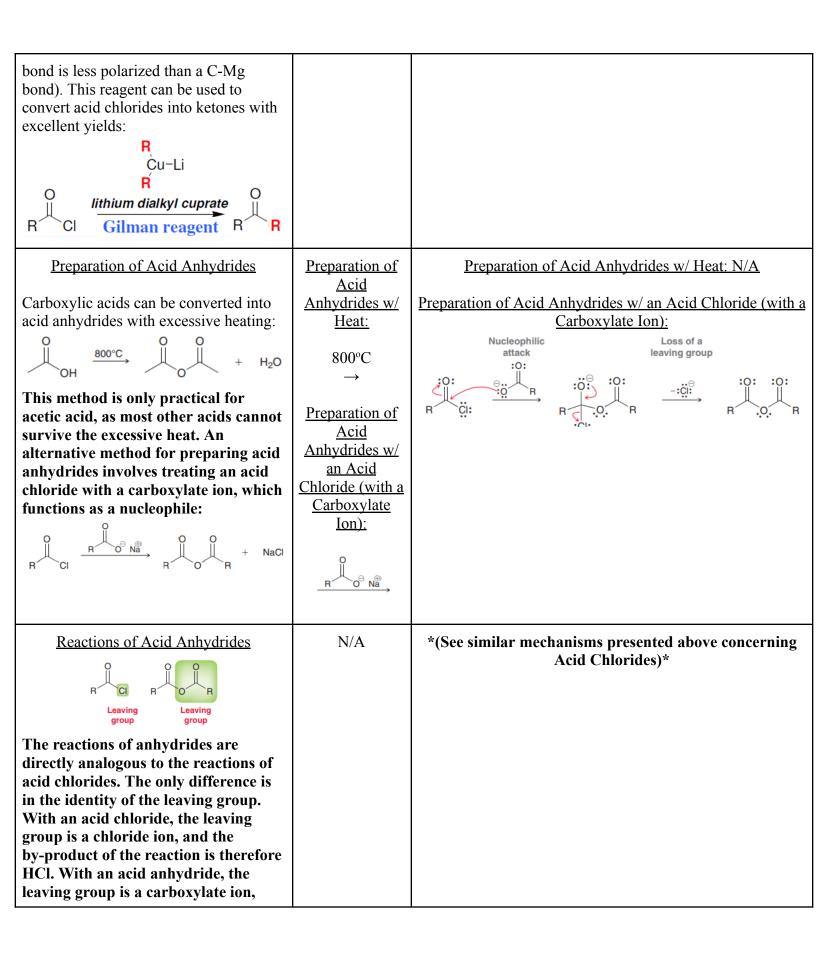
Nucleophilic attack

(second time)

Reduction of Acid Chlorides w/ 1) LiAl(OR)₃H Nucleophilic Loss of a leaving LiAl(OR)₃H attack group 2) H₂O Lithium tri(t-butoxy) aluminum hydride reacts with the acid chloride rapidly but will react with the aldehyde more slowly, allowing the aldehyde to be isolated. These conditions can be used to convert an acid chloride into an aldehvde: Typical Reactions between Acid 1) xs RMgBr Loss of a Nucleophilic attack Chlorides and Organometallic Reagents leaving group 2) H₂O When treated with a Grignard reagent, acid chlorides are converted into alcohols, with the introduction of two A Grignard The carbonyl alkyl groups: reagent functions group is re-formed as a nucleophile by expelling and attacks a chloride ion the carbonyl group as a leaving group Excess RMgBr Nucleophilic attack Proton transfer (second time) #(Note that the reaction between an acid chloride and a Grignard reagent cannot be used to produce a ketone. Using one The carbonyl After the reaction equivalent of the Grignard reagent group is attacked again is complete, simply leads to a mess of products. by a Grignard reagent, the alkoxide ion generating an alkoxide is protonated Producing the ketone requires the use of with an acid a more selective carbon nucleophile (i.e.

Reactions between Acid Chlorides and Organometallic Reagents (here, it's a Gilman Reagent)

lithium dialkyl cuprate, AKA a Gilman


reagent) that will react with acid chlorides but not with ketones).

The alkyl groups in this reagent are attached to copper rather than magnesium, and their carbanionic character is less pronounced (a C-Cu

Cu-Li
R

lithium dialkyl cuprate
Gilman reagent

(See a similar mechanism presented in "Typical Reactions between Acid Chlorides and Organometallic Reagents" above)

and the by-product is therefore a carboxylic acid. As a result, it is not necessary to use pyridine in reactions with acid anhydrides, because HCl is not produced.		
Acetic anhydride is often used to acetylate an alcohol or an amine: R-OH Acetic anhydride R-NH ₂ Acetic anhydride R-NH ₂	R O Na	*(Treat ROH and RNH ₂ as nucleophiles, and draw out a mechanism similar to the one displayed in "Preparation of Acid Anhydrides").*
Preparation of Esters via $S_N 2$ Reactions When treated with a strong base followed by an alkyl halide, carboxylic acids are converted into esters: O O O CH ₃ O CH ₃	1) NaOH → 2) Any Primary (or even Secondary) Halide (i.e. CH₃I)	(The carboxylic acid is first deprotonated to yield a carboxylate ion, which then functions as a nucleophile and attacks the alkyl halide in an S_N2 process. The expected limitations of S_N2 processes therefore apply. Specifically, tertiary alkyl halides <u>cannot</u> be used.) #See Reference Sheet 3 under " <u>Proton Transfers</u> " for a sample mechanism of deprotonation (here, step one, AKA 1) NaOH). Also see Reference Sheet 5 for a sample S_N2 mechanism (referring to step two, AKA 2) Any Primary (or even Secondary) Halide).
Preparation of Esters via Fischer Esterification Carboxylic acids are converted into esters when treated with an alcohol in the presence of an acid catalyst: HOH HOH HOH HOH HOH HOH HOH	ROH, [H ⁺] →	Proton transfer Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Nucleophilic attack Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Nucleo

Esters can be converted into carboxylic acids by treatment with sodium hydroxide followed by an acid: 1) NaOH	1) NaOH → 2) H ₂ O	Nucleophilic attack I Nucleophilic attack I Hydroxide functions as a nucleophile and attacks the carbonyl group Proton transfer The carboxylic acid is deprotonated by expelling an alkoxide ion as a leaving group R The carboxylic acid is deprotonated by the alkoxide ion, generating a carboxylate ion
Acid-Catalyzed Hydrolysis of Esters Esters can also be hydrolyzed under acidic conditions:	H_3O^+ \rightarrow	Proton transfer Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Proton transfer The alkoxy group is re-formed, by expelling an alcohol as a leaving group Nucleophilic attack Proton transfer Nucleophilic attack N
Aminolysis of Esters Esters react slowly with amines to yield amides: NH ₃ #(This process has little practical utility, because preparation of amides is achieved more efficiently from the reaction between acid chlorides and ammonia or primary or secondary amines.)	NH ₃ →	*(See "Hydrolysis of Acid Chlorides" for a similar mechanism).*

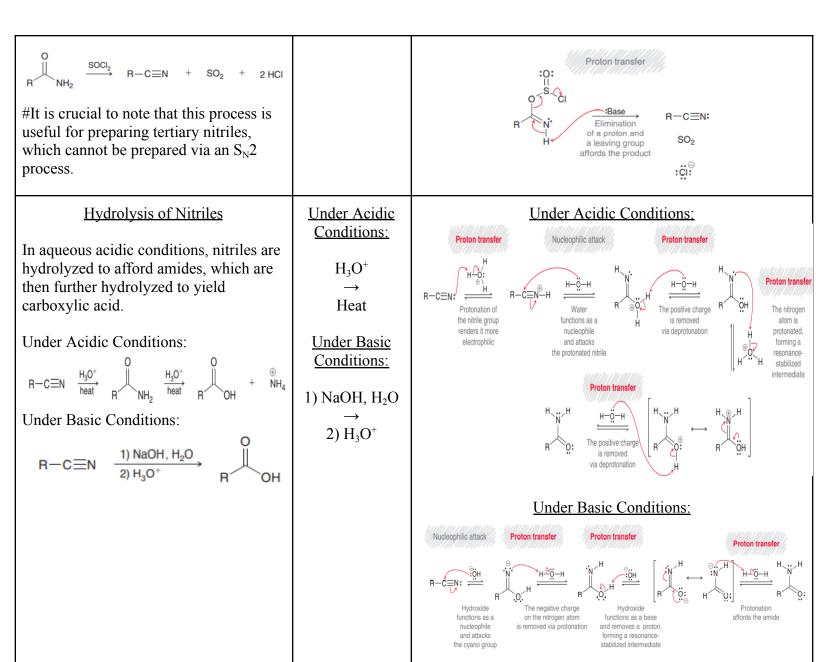
Typical Reduction of Esters with Hydride-Reducing Agents

When treated with lithium aluminum hydride, esters are reduced to yield alcohols:

1) xs LAH \rightarrow

Reduction of Esters with Hydride-Reducing Agents (in this case, DIBAH)

Treating an ester with only one equivalent of LAH is not an efficient method for preparing an aldehyde, because aldehydes are more reactive than esters and will react with LAH immediately after being formed. If the desired product is an aldehyde, then DIBAH can be used as a reducing agent instead of LAH. The reaction is performed at low temperature to prevent further reduction of the aldehyde:


1) DIBAH (AKA:

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

(See "Typical Reduction of Esters with Hydride-Reducing Agents" for a similar mechanism).

		,
Reactions between Esters and Grignard Reagents When treated with a Grignard reagent, esters are reduced to yield alcohols with the introduction of two alkyl groups: O O D D D D R R O R O R O D R R	1) xs RMgBr \rightarrow 2) H ₂ O	Nucleophilic attack Loss of a leaving group A Grignard reagent functions as a nucleophile and attacks the carbonyl group In earbonyl group is re-formed by expelling an alkoxide ion as a leaving group Proton transfer Proton transfer H After the reaction is complete, the alkoxide ion is protonated with an acid In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide Proton transfer R Proton transfer In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide In earbonyl group is attacked again by a Grignard reagent, generating an alkoxide in a grignary and a grigna
Acid-Catalyzed Hydrolysis of Amides Amides can be hydrolyzed to give carboxylic acids in the presence of aqueous acid, but the process is slow and requires heating to occur at an appreciable rate:	H_3O^+ \rightarrow heat	Proton transfer Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Proton transfer Nucleophilic attack Nucleophilic attack Nucleophilic attack Proton transfer Nucleophilic attack Nucleophilic att

Hydrolysis of Amides under Basic Conditions Amides are also hydrolyzed when heated in basic aqueous solutions, although the process is very slow: O NH ₂ 1) NaOH, heat 2) H ₃ O ⁺ OH	1) NaOH, heat → 2) H ₃ O ⁺	Nucleophilic attack Nucleophilic attack Loss of a leaving group
Reduction of Amides When treated with excess LAH, amides are converted into amines: 1) Excess LAH 2) H ₂ O NH ₂ NH ₂	1) xs LAH	NUCLEOPHILIC ATTACK AIH ₃ NH ₂ LAH DELIVERS A HYDRIDE ION, WHICH ATTACKS THE CARBONYL GROUP ATTACK (SECOND TIME) NH ₂ AN IMINE IS FORMED BY EXPELLING ALEAVING GROUP H H THE IMINE IS ATTACKED BY A HYDRIDE ION NH ₂ THE IMINE IS ATTACKED BY A HYDRIDE ION
Preparation of Nitriles via $S_N 2$ Reactions Nitriles can be prepared by treating an alkyl halide with a cyanide ion: $NaCN \rightarrow R \rightarrow $	NaCN →	*(See Reference Sheet 5 for a sample $S_{\rm N}2$ mechanism).* #Notably, since this process proceeds via an $S_{\rm N}2$ mechanism, so tertiary alkyl halides cannot be used.
Preparation of Nitriles from Amides Nitriles can also be prepared via the dehydration of an amide. Many reagents can be used to accomplish the transformation (i.e. thionyl chloride (SOCl ₂)):	SOCl ₂ →	Nucleophilic attack CI SES: CI The amide functions as a nucleophile and attacks thionyl chloride Nucleophilic attack CI SES: OSCI CI CHOride is expelled as a leaving group The positive charge on the nitrogen atom is removed via deprotonation

Reactions between Nitriles and Grignard Reagents

A ketone is obtained when a nitrile is treated with a Grignard reagent, followed by aqueous acid:

$$R-C \equiv N \xrightarrow{1) \text{RMgBr}} R$$

1) RMgBr
$$\rightarrow$$
 2) H_3O^+