
 ​ ​ ​ ​

Animate a Joke
Minimum experience: Grades 3+, 1st year using Scratch, 3rd quarter or later

At a Glance

Overview and Purpose

Coders combine understandings from several prior projects to animate a joke. The purpose of this project is to reinforce prior
understandings with a focus on modularity.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will review how to animate sprites to make them

look like they are talking.
Question:

●​ How can we animate sprites to make them look like
they are talking?

Statement:
●​ I will create a project with at least ## animated joke(s).

(use a number appropriate for the amount of time and
experience levels for the coders you work with)

Question:
●​ How can we create a project with at least ## animated

joke(s)? (use a number appropriate for the amount of
time and experience levels for the coders you work with)

Main standard(s): Reinforced standard(s):

1B-AP-10 Create programs that include sequences, events,
loops, and conditionals

●​ Control structures specify the order (sequence) in
which instructions are executed within a program and
can be combined to support the creation of more
complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in
a program that produces an animation about a
famous historical character, students could use a loop

1B-AP-12 Modify, remix, or incorporate portions of an existing
program into one's own work, to develop something new or
add more advanced features.

●​ Programs can be broken down into smaller parts, which
can be incorporated into new or existing programs. For
example, students could modify prewritten code from a
single-player game to create a two-player game with
slightly different rules, remix and add another scene to
an animated story, use code to make a ball bounce from
another program in a new basketball game, or modify
an image created by another student. (source)

1B-AP-13 Use an iterative process to plan the development of a
program by including others' perspectives and considering user
preferences.

●​ Planning is an important part of the iterative process of
program development. Students outline key features,
time and resource constraints, and user expectations.
Students should document the plan as, for example, a
storyboard, flowchart, pseudocode, or story map.
(source)

https://bootuppd.org/
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

to have the character walk across the screen as they
introduce themselves. (source)

1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

●​ Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background,
place characters, and program actions. (source)

1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

●​ As students develop programs they should continuously
test those programs to see that they do what was
expected and fix (debug), any errors. Students should
also be able to successfully debug simple errors in
programs created by others. (source)

1B-AP-17 Describe choices made during program development
using code comments, presentations, and demonstrations.

●​ People communicate about their code to help others
understand and use their programs. Another purpose of
communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

●​ P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic process.
(p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Control Algorithms

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

●​ "Control structures specify the order in which
instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures.
As they progress, students expand their
understanding to combinations of structures that
support complex execution." (p. 91)

●​ Grade 5 - "Control structures, including loops, event
handlers, and conditionals, are used to specify the
flow of execution. Conditionals selectively execute or
skip instructions under different conditions." (p. 103)

Modularity
●​ "Modularity involves breaking down tasks into

simpler tasks and combining simple tasks to create
something more complex. In early grades, students
learn that algorithms and programs can be designed
by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn
about recognizing patterns to make use of general,
reusable solutions for commonly occurring scenarios
and clearly describing tasks in ways that are widely
usable." (p. 91)

●​ Grade 5 - "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by
incorporating smaller portions of programs that have
already been created." (p. 104)

●​ "Algorithms are designed to be carried out by both
humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

●​ Grade 5 - "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (p. 103)

Scratch Blocks

Primary blocks Events, Looks, Motion

Supporting blocks Control, Operators, Sound

Vocabulary

Algorithm ●​ A step-by-step process to complete a task. (source)
●​ An algorithm is a formula or set of steps for solving a particular problem. To be an algorithm, a

set of rules must be unambiguous and have a clear stopping point. (source)

Backdrop ●​ One out of possibly many frames, or backgrounds, of the Stage. (source)

Debugging ●​ The process of finding and correcting errors (bugs) in programs. (source)
●​ To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (source)

Event (trigger) ●​ An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (source)

●​ The computational concept of one thing causing another thing to happen. (source)
●​ Any identifiable occurrence that has significance for system hardware or software.

User-generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. (source)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/5Tk0MEAQopMFuBThtUlJWa/27428a0dbb25f4b7752ac40f5dacd0a7/Operators.png
https://images.ctfassets.net/1devtjk7knks/385tNeMaefAu4i7yiXeUqC/578353cea86a0fcab3963afd6e1999d7/Sound.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://www.webopedia.com/TERM/E/event.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272

Parallel ●​ Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

●​ The computational concept of making things happen at the same time. (source)

Scripts ●​ One or more Scratch blocks connected together to form a sequence. Scripts begin with an event
block that responds to input (e.g., mouse click, broadcast). When triggered, additional blocks
connected to the event block are executed one at a time. (source)

Sprite ●​ A media object that performs actions on the stage in a Scratch project. (source)

Storyboard ●​ Like comic strips for a program, storyboards tell a story of what a coding project will do and can
be used to plan a project before coding.

More vocabulary
words from CSTA

●​ Click here for more vocabulary words and definitions created by the Computer Science Teachers
Association

Connections

Integration Potential subjects: Language arts, media arts, physical education, science

Example(s): This project could integrate with language arts lessons if coders created jokes with
fictional characters. This project could integrate with physical education classes if coders predicted
and embodied a sprite’s motion by physically mimicking a sprite’s algorithm. Note, this process may
get a little silly in the best way possible. Click here to see other examples and share your own ideas on
our subforum dedicated to integrating projects or click here for a studio with similar projects.

Vocations Authors, marketers, and media artists are often asked to create a story to sell a product or create a
narrative. Click here to visit a website dedicated to exploring potential careers through coding.

Resources

●​ Example project
●​ Video walkthroughs
●​ Quick reference guide
●​ Project files
●​ School appropriate jokes ;)

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

Customizing this project for your class (10+ minutes): Remix
the project example to include your own animated jokes.

(10+ minutes) Read through each part of this lesson plan and
decide which sections the coders you work with might be
interested in and capable of engaging with in the amount of
time you have with them. If using projects with sound,
individual headphones are very helpful.

●​ BootUp Scratch Tips
○​ Videos and tips on Scratch from our YouTube

channel
●​ BootUp Facilitation Tips

○​ Videos and tips on facilitating coding classes
from our YouTube channel

●​ Scratch Starter Cards

http://www.webopedia.com/TERM/P/parallel.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=141
https://www.csteachers.org/page/glossary
https://www.csteachers.org/page/glossary
https://training.bootuppd.org/login/index.php
https://scratch.mit.edu/studios/27603152/
https://careerswithstem.com.au/
https://scratch.mit.edu/projects/204033931/
https://www.youtube.com/playlist?list=PLV4zluvZAlMqQTJx5UhCkcccTZysbHy-Y
https://drive.google.com/open?id=1D3DEdRTbQ6lZDGs8PWA2GkoRpbGAj_rOR5P8c4SjLaw
https://drive.google.com/drive/folders/0B342uiaCLSS3Tjh1QmFybEtNbFU?resourcekey=0-Ag6Ya4HrT4Ij90EEioqf8A&usp=sharing
http://bfy.tw/GrQV
https://scratch.mit.edu/projects/204033931/
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/

Download the offline version of Scratch: Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here to download the offline version of Scratch on to
each computer a coder uses and click here to learn more by
watching a short video.

○​ Printable cards with some sample starter code
designed for beginners

●​ ScratchEd
○​ A Scratch community designed specifically for

educators interested in sharing resources and
discussing Scratch in education

●​ Scratch Help
○​ This includes examples of basic projects and

resources to get started
●​ Scratch Videos

○​ Introductory videos and tips designed by the
makers of Scratch

●​ Scratch Wiki
○​ This wiki includes a variety of explanations and

tutorials

Getting Started (6-10+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to animate a joke. Display and
demonstrate the sample project (or your own remixed
version).

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (1:04)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

2. Discuss (3+ minutes):
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?” Another approach
might be to wonder out loud by thinking aloud different
algorithms and testing them out, next asking coders “what do
you wonder about or want to try?”

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Practices reinforced:
●​ Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
http://scratched.gse.harvard.edu/
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://scratch.mit.edu/projects/204033931/
https://www.youtube.com/watch?v=kXRs_70j2Uk
https://youtu.be/B2sPAmQxiGc

●​ What would we need to know to make something like
this in Scratch?

●​ What kind of blocks might we use?
●​ What else could you add or change in a project like

this?
●​ What code from our previous projects might we use in

a project like this?
●​ What kind of jokes might we animate?

●​ What kind of sprites might we see in that
joke?

○​ What kind of code might they have?

3. Log in (1-5+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and create a new project.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

Why the variable length of time? It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

Project Work (85-90+ minutes; 2+ classes)

Suggested sequence Resources, suggestions, and connections

4. Create a storyboard (10-15+ minutes):
Walk through the process of creating a storyboard by asking
the following questions, then giving coders time to document
their answers through physical or digital means:

1.​ What joke(s) are you going to animate?
2.​ What might we include in our storyboard for creating

an animated joke?
a.​ What are some of the media we might use in a

project like this (pictures, sounds, sprites,
backdrops, etc.)?

3.​ How will your sprites tell or show the joke?
a.​ What code will you use to do that?

4.​ How might a user interact with the joke?
a.​ How might we use code to create that

interaction?

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If

Standards reinforced:
●​ 1B-AP-13 Use an iterative process to plan the

development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

Resource: Example storyboard templates
Resource: Storyboard questions for displaying
Resource: School appropriate jokes ;)

Note: Some coders do really well with open projects, while
others thrive within constraints. It may make more sense to
suggest a range of sprites and backdrops so coders aren’t
overwhelmed with possibilities. This can also help with better
predicting how long it might take to create the story.

http://creately.com/blog/examples/storyboard-templates-creately/
https://docs.google.com/document/d/167AzAXox4x1qJIDpIzEMU_-Lw091qR2iATBZMbALyX8/edit?usp=sharing
http://bfy.tw/GrQV

approved, they may continue on to the next steps (logging in
and creating their scenic walk); otherwise they can continue to
think through and work on their storyboard.

Storyboarding Tip: Coders can color their storyboard (or mark
with symbols) what they know, have questions about, and
don’t know. For example: mark something green if coders
know how to create the algorithm for that sprite/action; mark
yellow if a coder has questions; mark red if a coder is unsure
how to do something.

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

5. Talking sprites (15+ minutes):
1+ minute demonstration
Display and demonstrate the sample project (or your own
remixed version) one more time. Ask coders to chat with a
neighbor about how they might get a sprite to look like it’s
talking.

9+ minute reverse engineering
Ask coders to see if they can figure out how to use the paint
editor tools and their code blocks to create an algorithm that
makes a sprite do something similar to what was
demonstrated. Facilitate by walking around and asking guiding
questions.

5+ minute demonstration
Walk through each step of the process for creating a talking
sprite. Demonstrate one or both methods for moving a mouth
or head to simulate talking. Ask coders to image other ways to
make a sprite talk (e.g., taking a picture of your mouth in
different shapes or expressions). Repeat this process for a
couple of sprites and demonstrate how to name the costumes
for ease of use.

Create a function using message blocks for moving the sprite’s
mouth by switching to the next and previous costumes to
simulate talking (see the video or quick reference guide). Point
out that we can use this function multiple times by switching
to a desired costume and calling our new function to run in
parallel with our other code. To stop our function, we simply
need to use stop other scripts in sprite blocks when we want
to stop the sprite from talking.

Ask how we make sure our sprite doesn’t keep their mouth
open when we stop our talking function? (use a switch
costume to block to switch to a costume with the mouth
closed)

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
●​ 1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

Practices reinforced:
●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: Talking sprites (6:46)
Quick reference guide: Click here

Suggested questions:

●​ How else could we indicate a sprite is talking in
Scratch?

●​ When should we use text and when should we use
recordings to show a talking sprite?

●​ Why did we use message blocks and not My Blocks?
a.​ (so we can have this function run in parallel

with other code every time a sprite talks)

A note on using the “Coder Resources” with your class: Young
coders may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a
project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we
recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

https://scratch.mit.edu/projects/204033931/
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://youtu.be/-SAKJ9xzu8g
https://docs.google.com/presentation/d/1D3DEdRTbQ6lZDGs8PWA2GkoRpbGAj_rOR5P8c4SjLaw/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://youtu.be/-SAKJ9xzu8g
https://docs.google.com/presentation/d/1D3DEdRTbQ6lZDGs8PWA2GkoRpbGAj_rOR5P8c4SjLaw/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG

6. Animate your joke(s) (60+ minutes, the majority of at least
two classes):
Give coders time to animate their joke(s) by applying their
understandings from previous projects to this new project and
encourage them to constantly refer back to their storyboard
when they’re stuck on what they should do next. Encourage
peer-to-peer assistance and facilitate 1-on-1 as needed.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Facilitation Suggestion: Some coders may not thrive in inquiry
based approaches to learning, so we can encourage them to
use the Tutorials to get more ideas for their projects; however,
we may need to remind coders the suggestions provided by
Scratch are not specific to our projects, so it may create some
unwanted results unless the code is modified to match our
own intentions.

Suggested questions:

●​ How can you use modularity to make your code more
organized and easier to read?

●​ Can you create hidden sprites a user can interact with
in your joke?

●​ Can you make it so the user helps tell a joke?

7. Add in comments (the amount of time depends on typing
speed and amount of code):
1 minute demonstration
When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how the
code is going to work. Review how we can use comments in
our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time
Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Algorithms

Video: Add in comments (1:45)
Quick reference guide: Click here

Facilitation suggestion: One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

Assessment

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

●​ Communicating about computing

https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the
debugging exercises?

●​ Did coders create a project
similar to the project preview?

○​ Note: The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Did coders include descriptive
comments for each event in all
of their sprites?

●​ Can coders explain how they
used broadcast blocks or more
blocks as functions to make
their code more organized and
easier to read (modularity)?

●​ Can coders explain how their
project is similar to their
storyboard?

●​ Did coders create an animated
joke with at least ## different
jokes?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the
assessment examples for more
questions.

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or
different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at
the end for more suggestions.

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Use the example project as a guide (as needed)
At some point, coders might get stuck or run out
of ideas. Rather than explaining to them how to
do something, ask them to open the example
project, read the comments inside the various
sprites and background, and then look at the code
to see if they can figure out how to solve their
problem. Although this is a very open-ended
approach, this models a common coding practice
that helps coders become independent learners.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Resource: Example project

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Note: The example project has a lot of messages that all do different
things. It makes it look like the project is complicated; however, each
message/function is relatively easy to understand and has comments that
explains what it does.

Add even more (30+ minutes, or at least one
class):
If time permits and coders are interested in this
project, encourage coders to explore what else
they can create in Scratch by trying out new
blocks and reviewing previous projects to get
ideas for this project. When changes are made,
encourage them to alter their comments to reflect
the changes (either in the moment or at the end
of class).

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:

●​ What else can you do with Scratch?
●​ What do you think the other blocks do?

https://scratch.mit.edu/projects/204033931/
https://scratch.mit.edu/projects/204033931/
https://scratch.mit.edu/projects/204033931/
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif

a.​ Can you make your project do ____?
●​ What other sprites can you add to your project?
●​ What have you learned in other projects that you could use in this

project?
●​ Could you make this project a story or a game with animated

sprites?
●​ What other jokes could you animate in this project?

Similar projects:
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch this video (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

●​ What are some ways you can expand this project beyond what it
can already do?

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

micro:bit extensions:
Note: the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch this video (2:22) and use this
guide to learn how to get started with a micro:bit
before encouraging coders to use the micro:bit
blocks.

Much like the generic Scratch Tips folder linked in
each Coder Resources document, the micro:bit
Tips folder contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the micro:bit
Tips folder uses numbers to indicate a suggested
order for learning about using a micro:bit in
Scratch; however, coders who are comfortable
with experimentation can skip around to topics
relevant to their project.

Standards reinforced:
●​ 1B-AP-09 Create programs that use variables to store and modify

data
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-11 Decompose (break down) problems into smaller,

manageable subproblems to facilitate the program development
process

●​ 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:
●​ Recognizing and defining computational problems
●​ Creating computational artifacts
●​ Developing and using abstractions
●​ Fostering an inclusive computing culture
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

https://youtu.be/hudasCRlwLI
https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX

●​ Modularity
●​ Program Development
●​ Variables

Folder with all micro:bit quick reference guides: Click here
Additional Resources:

●​ Printable micro:bit cards
○​ Cards made by micro:bit
○​ Cards made by Scratch

●​ Micro:bit’s Scratch account with example projects

Generic questions:

●​ How can you use a micro:bit to add news forms of user
interaction?

●​ What do the different micro:bit event blocks do and how could you
use them in a project?

●​ How could you use the LED display for your project?
●​ What do the tilt blocks do and how could you use them in your

project?
●​ How could you use the buttons to add user/player controls?
●​ How might you use a micro:bit to make your project more

accessible?

Differentiation

Less experienced coders More experienced coders

Demonstrate the example remix project or your own version,
and walk through how to experiment changing various
parameters or blocks to see what they do. Give some time for
them to change the blocks around. When it appears a coder
might need some guidance or has completed an idea,
encourage them to add more to the project or begin following
the steps for creating the project on their own (or with BootUp
resources). Continue to facilitate one-on-one using
questioning techniques to encourage tinkering and trying new
combinations of code.

If you are working with other coders and want to get less
experienced coders started with remixing, have those who are
interested in remixing a project watch this video (2:42) to learn
how to remix a project.

Demonstrate the project without showing the code used to
create the project. Challenge coders to figure out how to
recreate a similar project without looking at the code of the
original project. If coders get stuck reverse engineering, use
guiding questions to encourage them to uncover various
pieces of the project. Alternatively, if you are unable to work
with someone one-on-one at a time of need, they can access
the quick reference guides and video walkthroughs above to
learn how each part of this project works.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have
those who are interested watch this video (2:30) to learn how
to reverse engineer a project.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why doesn't Jodi appear until after she says
supplies?

●​ We need to use a “say” block without a
timer, then we need to use a blank “say”
block at the end to stop saying the word.

●​ The reason for this is because the “say”
block without the timer will immediately

Standards reinforced:
●​ 1B-AP-15 Test and debug (identify and fix errors) a program or

algorithm to ensure it runs as intended
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms

https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://scratch.mit.edu/projects/204033931/
https://youtu.be/_NY8SOengc0
https://youtu.be/jjrFkZo0T20
https://scratch.mit.edu/projects/204071723/
https://scratch.mit.edu/projects/204071723/
https://images.ctfassets.net/1devtjk7knks/3UOvUofX4wQe5DCu9ygW89/c310842a8baac6083edc4c3e39f235cd/Scratch_-_Animate_Joke_-_Debugging1.png
https://images.ctfassets.net/1devtjk7knks/3UOvUofX4wQe5DCu9ygW89/c310842a8baac6083edc4c3e39f235cd/Scratch_-_Animate_Joke_-_Debugging1.png
https://images.ctfassets.net/1devtjk7knks/3UOvUofX4wQe5DCu9ygW89/c310842a8baac6083edc4c3e39f235cd/Scratch_-_Animate_Joke_-_Debugging1.png

begin the code beneath it, but the “say”
block with the timer will wait until the
time is up before moving to the next block
(kind of like the “broadcast message” and
“broadcast message and wait” blocks).

Why does our code mess up when Champ99 starts
asking the joke?

●​ In our “Champ99 asking” function
(message), we “broadcast Champ99
asking” again, which creates a recursive
loop (a function that calls itself repeatedly
- which can create an infinite loop).

●​ We are supposed to call our function that
makes Champ99 talk: “Champ99 mouth
moving.”

Why does Champ99 move when Cassy talks, but
doesn't move his mouth when he talks?

●​ In the Champ99 sprite, we need the final
function (message) to be “Champ99 mouth
moving” and not “Cassy mouth moving.”

Even more debugging exercises

●​ Control

Suggested guiding questions:

●​ What should have happened but didn’t?
●​ Which sprite(s) do you think the problem is located in?
●​ What code is working and what code has the bug?
●​ Can you walk me through the algorithm (steps) and point out

where it’s not working?
●​ Are there any blocks missing or out of place?
●​ How would you code this if you were coding this algorithm from

Scratch?
●​ Another approach would be to read the question out loud and

give hints as to what types of blocks (e.g., motion, looks, event,
etc.) might be missing.

Reflective questions when solved:

●​ What was wrong with this code and how did you fix it?
●​ Is there another way to fix this bug using different code or tools?
●​ If this is not the first time they’ve coded: How was this exercise

similar or different from other times you’ve debugged code in
your own projects or in other exercises?

Unplugged Lessons and Resources

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating
unplugged lessons:

Lesson 1.​ Getting started sequence and beginning project work
Lesson 2.​ Continuing project work
Lesson 3.​ Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4.​ Project extensions and sharing

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing

https://scratch.mit.edu/projects/204071741/#player
https://scratch.mit.edu/projects/204071741/#player
https://images.ctfassets.net/1devtjk7knks/5WWUBYjKkH5l6enYiCXyih/777697c7bc15aea1116433bc3ab4b0d9/Scratch_-_Animate_Joke_-_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/5WWUBYjKkH5l6enYiCXyih/777697c7bc15aea1116433bc3ab4b0d9/Scratch_-_Animate_Joke_-_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/5WWUBYjKkH5l6enYiCXyih/777697c7bc15aea1116433bc3ab4b0d9/Scratch_-_Animate_Joke_-_Debugging2.png
https://scratch.mit.edu/projects/204071757/#player
https://scratch.mit.edu/projects/204071757/#player
https://images.ctfassets.net/1devtjk7knks/2CF18xP6DYZNAs3sdmtcm5/dc289106861795a057370307322bd8a9/Scratch_-_Animate_Joke_-_Debugging3.png
https://images.ctfassets.net/1devtjk7knks/2CF18xP6DYZNAs3sdmtcm5/dc289106861795a057370307322bd8a9/Scratch_-_Animate_Joke_-_Debugging3.png
https://images.ctfassets.net/1devtjk7knks/2CF18xP6DYZNAs3sdmtcm5/dc289106861795a057370307322bd8a9/Scratch_-_Animate_Joke_-_Debugging3.png
https://scratch.mit.edu/studios/4149066/
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing

journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ What other projects could we do using the same

concepts/blocks we used today?
●​ What’s something you had to debug today, and what

strategy did you use to debug the error?
●​ What mistakes did you make and how did you learn

from those mistakes?
●​ How did you help other coders with their projects?

○​ What did you learn from other coders today?
●​ What questions do you have about coding?

○​ What was challenging today?
●​ Why are comments helpful in our projects?
●​ How is this project similar to other projects you’ve

worked on?
○​ How is it different?

●​ How else could you animate a joke in Scratch?
●​ What other things could you animate (e.g., newscast,

book report, short stories, etc.)
○​ What code would you use to create those

animations?
●​ More sample prompts

●​ Fostering an inclusive culture
Concepts reinforced:

●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects: If coders would like to
publicly share their Scratch projects, they can follow these
steps:

1.​ Video: Share your project (2:22)
a.​ Quick reference guide

2.​ Video (Advanced): Create a thumbnail (4:17)
a.​ Quick reference guide

https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

	 ​​​ ​
	Animate a Joke
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	Scratch Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (6-10+ minutes)
	Project Work (85-90+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

