Austin Community College MLAB 1211 Urinalysis/Body Fluid Unit 3 Objectives

Part 1 - Overview of the chemical examination of urine

- 1. Demonstrate the proper technique for performing urine reagent dipstick testing.
- 2. State the normal values for the chemical dipstick on a urine.
- 3. Evaluate the significance of each of the following chemical constituents of a urine sample: glucose, ketones, bilirubin, blood, pH, leukocyte esterase, protein, urobilinogen, and nitrites.
- 4. Review sources of error in the handling of urine reagent dipsticks.
- 5. Explain how time delays have an effect on the chemical testing of urine.
- 6. Identify the indicator used in urine dipsticks to determine urine pH.

Part 2 - Carbohydrates

- 1. Describe the storage form of glucose found in the liver and muscle.
- 2. Describe the pathway of glucose as it is filtered and reabsorbed in the nephron in normal/abnormal concentrations.
- 3. Describe the renal threshold concept.
- 4. Define glycogenesis, glycogenolysis, and glycosuria.
- 5. Explain the chemical reaction of glucose on the urine dipstick.
- 6. Explain how reducing substances affect glucose chemical testing on urine.
- 7. Explain the significance of the Clinitest procedure.
- 8. Describe the pass-through phenomenon of the Clinitest procedure.

Part 3 - Ketones

- 1. Identify the three ketone bodies produced by the human body.
- 2. Describe how the ketone bodies are produced in excess.
- 3. Describe the reactive component used in the urine dipstick for ketones.
- 4. State two reasons each for false negatives and false positive results in urine ketone testing.
- 5. Explain the purpose of the Acetest tablets.
- 6. State the effects that ketonuria, ketonemia, ketosis, acidosis, and ketoacidosis have on the human body.

Part 4 - Protein

- 1. Identify the protein that gives a positive protein result on the urine dipstick.
- 2. Define proteinuria.
- 3. Explain the importance of detecting orthostatic proteinuria.
- 4. Discuss the significance of Tamm-Horsfall protein.
- 5. State the significance of Bence-Jones protein.
- 6. Summarize the principle of the urine dipstick reaction for protein.
- 7. Evaluate four sources of error that may affect the urine dipstick method for protein.

Part 5 – Bilirubin and Urobilinogen

- 1. Describe the formation of bilirubin, urobilinogen and stercobilinogen.
- 2. Compare direct and indirect bilirubin.
- 3. Define jaundice and urobilin.

- 4. Describe the confirmatory test used for a positive bilirubin urine dipstick.
- 5. Identify the major reactive component of Ehrlich's reagent.

Part 6 – Blood, nitrite, leukocyte esterase, specific gravity and ascorbic acid

- 1. Explain the significance of blood in a urine sample.
- 2. Discuss the principle of the blood portion of the urine dipstick.
- 3. Differentiate red blood cells, hemoglobin, and myoglobin as to their original in a urine specimen.
- 4. Explain the dipstick principle for the nitrate testing.
- 5. Explain why a negative test does not rule out a urinary tract infection (UTI).
- 6. Explain the principle of the leukocyte esterase dipstick test.
- 7. Explain the significance of a positive leukocyte esterase dipstick test.
- 8. Describe how specific gravity is determined on the urine dipstick.
- 9. State why testing for the presence of ascorbic acid in urine is significant.
- 10. State how urine dipsticks tests are affected by ascorbic acid.

Part 7 Automated Urinalysis, kidney function tests, and other renal disorders

- 1. State the reflectance photometry and automated microscopy principles of urinalysis instruments.
- 2. Describe the method used by the Sysmex UF-100 and the IRIS automated UA systems.
- 3. Compare upper and lower urinary tract infections.
- 4. Describe the physiology, symptoms, and urinalysis results for patients with diabetes mellitus, diabetes insipidus, hepatitis, urinary tract infections, galactosuria.
- 5. Describe the significant clinical symptoms, etiology and characteristic urinalysis findings for UITs.
- 6. Analyze patient urinalysis and correlate results with suspected diagnosis.
- 7. Identify renal function tests used to evaluate glomerular filtration, tubular reabsorption/secretion functions, and renal blood flow.