Textpattern custom fields

Custom fields are changing. Here's the nitty gritty.

Features, constraints and conventions

Custom fields per content type: article, image, file, link, category, section, and user.
Unlimited number of fields.

Field names and labels are available - labels are per-language. Names are enforced to a
strict convention (no spaces!) which permits their use in <txp:article_custom> tags.

e Field names can be reused in different content types but must be unique within any
given content type.

e Fields can be of varying types - text, number, date, checkbox, radio, checkbox set, radio
set, select list, etc.

Each field can have 'default' value(s).
Field data is stored in the most efficient table structure based on its datatype. Fields will
no longer be part of the 'textpattern’ table.

e Storage and data input is abstracted away from the user. The administrator defines the
available fields and their properties; the input/output mechanisms are predetermined
based on sensible defaults. Field types and their storage mechanisms are extensible (or
alterable) by plugin authors.

e Fields are presented to the front end as they are now ($thisarticle) but with additional
capabilities.

Database tables

The underlying information is presented to users as a simple name-value metadata store.
Hence all tables begin with txp_meta*. Under the hood it is more complex with a series of tables
as follows:

Table: txp_meta

Custom field definitions.

Column Notes
id Numeric ID. Unique across ALL custom fields (auto-increment).
name Field name. Uniqueness only enforced per content type. Can only contain

regular characters - no spaces or punctuation beyond underscore. The
human-visible label is managed in the txp_lang table.

content_type The content type to which this field belongs. E.g. article, image, category,
etc. Not 4NF, but makes it easier to extend.

data_type The SQL field type that will be used to represent this field. An internal
mapping of fields (e.g. checkbox_set, text_input, date) is preset to suitable
data types. This mapping is exposed via callback.

render How to render this particular field to users of admin / public sides, e.g. a
textbox, select list, date picker, etc. Will tie in with the widget library.

family Optional grouping to indicate that this field is part of a wider set of fields.
Unused in core at present.

textfilter Which texftfilter to employ when storing the content. Only applicable to
certain datatypes. The usual three (textile, line breaks, or untouched) are
available by default, plus plugin-defined. If used, two values are stored: one
raw' (as input) and one 'cooked' (as processed through the textfilter).

delimiter The delimiter character(s) applied to this field when outputting as a delimited
set (only applicable to certain data types).

ordinal The numerical order in which to display this field, in relation to other fields.
Freeform, for administrator (ab)use. Unnecessary (or could be hidden) if
field order is determined via drag/drop or some other Ul mechanism.

created When the field is valid from, i.e. it will only appear on articles that have
Posted dates after the field creation date.

modified When the field structure was last modified (default: now).

https://en.wikipedia.org/wiki/Fourth_normal_form

expires

When the field will no longer become available. If a field has expired, its
content remains visible for existing content, but the field is no longer
presented on new content created after this date.

Table: txp_meta_options

Any field types that require options (such as checkbox sets, radio sets, or select list) or those
that employ constraints will have entries in this table:

e One row per option, per type; or

e One row per constraint value, per constraint.

Column Notes

meta_id Foreign key to the txp_meta table's ID column so we know to which field this
option belongs.

type The type of data this row holds: option or constraint.

name The option's value as seen by the system (e.g. the 'name’ field in an <input>
tag). The human-visible label is managed in the txp_lang table.

ordinal The numerical order in which to display the option, in relation to others with
the same meta_id.

Tables: txp_meta value *

Each datatype has a corresponding table in which data of that type is stored. The main types
defined by core are: text, int, tinyint, varchar, datetime. For example, all varchar data for any
fields of that datatype are stored in the txp_meta_value_varchar table. These tables are created
on-the-fly as needed if one doesn't exist for a field of the given type.

Column Notes

meta_id Foreign key to the txp_meta table's ID column so we know to which field this
data belongs.

content_id Foreign key to the content type so we know to which record (the article,
image, category, user, etc) this data belongs. Note: this will make section
custom fields impossible until a section ID is introduced in that table.

One special value exists: -1. This denotes the (optional) default value
assigned to this field. Any row that contains a '-1' entry here has its content
preset to this value when input fields are rendered.

value_id Sequential indicator to denote multiple values stored for this field against the
same content. Usually, this will be 0 as only one value will be stored per
field, but if dealing with real-time input or multi-user systems, other values
may be employed by plugins to distinguish/subdivide values.

value The actual value of the nominated field. The SQL datatype assigned to this
column is the most appropriate one for the type of data it is intended to store
(for efficiency). Usually it matches the name of the table (e.g.
txp_meta_value_datetime uses a DateTime field type).

value_raw For any fields that employ a texffilter, this field holds the as-typed, raw input.
The 'value' field holds the cooked content and is thus the one that is always
output when displaying field contents.

PHP objects

Four main objects exist for manipulating and mapping custom field data. In the
vendors\Textpattern\Meta namespace are:

ContentType

A collection of content type mappings for custom fields. Each entry in the (iterable) array stored
in this object is a place in Textpattern where custom field content may be stored.

Extensible via reference using the txp.meta > content.types callback.

DataType

Default data field mapping and its capabilities.

Each entry in the (iterable) array stored in this object comprises:

type (string) database field type

size (int) database field size (width). null = system defined

textfilter (bool) whether the field can accept Textfiltered content

options (bool) whether the field is made of a set of options (e.g. select list)

delimited (bool) whether the field can hold delimited content

constraints (false or array) whether the field can be subject to constraints, and which
ones to apply

Extensible via reference using the txp.meta > data.types callback.

Field

A custom field definition. A representation of a row in the txp_meta table with a few additional
conventions built in:

e Can be constructed with a numeric id or array('name’, 'type') as argument, in which case
the associated field values/options will be loaded into the object as well. Otherwise, a
blank object will be instantiated ready for population.

Field name sanitization is handled automatically.

If a field type is altered after it has been in use, data is migrated from that field type to
another, within reason. If you try and change a varchar field to an int, data loss is likely
but it's up to the administrator if they wish to take the risk or migrate by hand first.

e Localised labels are managed automatically in txp_lang by prefixing the field name with
txpcf_<content-type>_.

e Localised help text is managed automatically in txp_lang by prefixing the field name with
txphlp_<content-type>_.

Localised option text is managed automatically in txp_lang by prefixing the field value
with txpopt_<content-type>_.

Data is ordered by ordinal when loaded into the object.

A render() method is available which will construct an input field of the correct type
based on the 'render' database field, populated with default value(s) if appropriate. Used
on the admin side to permit input into associated fields, but could also be used by
entrepreneuring public plugins to permit public input into designated fields.

FieldSet

An (iterable) collection of Field objects, filtered or arranged by given criteria. The primary filter is

'type' - a collection MUST have a content type (default = article). After that you can rejig the
output by:

e id, ordered by custom field number.

e name.

e field, as a backwards-compatible set of custom_N items.

e date, as a set of fields that are "valid" at a particular datestamp. Useful when setting up

input fields on an article, for example, as it will only fetch the custom fields that were in
use when the article was Posted (i.e. the article date falls between the field's created and
expires dates).

Data workflow

Read the id of the content being edited/viewed.

Obtain the custom field FieldSet for the content.

Look up that content id in the meta store (including defaults) for each field.

Admin side:
o Render appropriate fields, content, defaults and constraints for the collection.
o Handle saving custom field content when the main content is saved.

e Public side:

o Load $thisarticle with content.

o Permit <txp:custom_field /> and <txp:if_custom_field> tags to interrogate and
retrieve data.

Tag considerations

(none of this is done yet - feel free to implement!)

Public custom_field tags need to support:

A 'type' to select which flavour of field to display (content type). Bonus points for
automatically detecting the type based on context, and simply permitting overrides if
necessary.

Grabbing groups of fields to display and using break/wraptag to separate them. e.g.
<txp:custom_field name="field1, field2, field3" break="p" wraptag="div"
class="field-group" />. Use inputLabel() to render these if possible, so that callbacks are
automatically available per field. Figure how to best utilise core features like "<+>".
Possible ordering of groups when displaying the fields and their content.

Ability to use the field names in <txp:article_custom> as content filters.

Retain ability to fallback on <txp:custom_field name="any-field"> so that hacks such as
obtaining the raw article image data are still possible. Should be easy if all data remains
in $thisarticle.

Possibly beef up <txp:if_custom_field> so it can compare sensible things when different
field types are in use. For example:

Testing if a field is greater than/less than a date/value.

Testing if one of the options in a checkbox set is selected.

Testing if all of the options in a set are selected.

Testing multiple fields: if field A is something AND field B is something else? Or
leave this to plugins?

O O O O

O .
When the widget library is available, ability to render an appropriate input widget for each
field.
Backwards compatibility with existing user templates on upgrade.

Field handling - admin side

Custom fields cannot remain tucked away in their own Custom fields twisty on the Write panel.
The big question is how to build them into the fabric of the Write panel (and other panels) and
what customizations we offer to authors.

Things to consider:

e How and where will the fields appear on first load - before any customization has been
done?

e Should we consider permitting block drag/drop on the Write panel? And on other panels?
Each field would need to be treated as its own block and/or be permitted to be dropped
into existing blocks to become part of that group. Can all this be handled on mobile
devices too?

e How far would block customization go? Would we only permit some to be moved? Or
everything? What about things like Title that are essential? Should they be unmovable?

e Can blocks be hidden completely or removed, e.g. 'Recent articles'. And if they are
removed, how would someone get them back?

e What happens to data on save if a block is not visible? Do we need to maintain hidden
fields for such content so the Save process doesn't complain at missing content fields? If
so, hidden fields might be a way of maintaining field visibility so they can be reinstated
via some mechanism.

e How can fields be grouped into logical blocks, and have names assigned to the groups?
Think i18n. Dragging things into an already-existing group makes sense, but | don't
much care for the Android concept of dragging one first-class item on top of another to
pop up a dialog to permit a new group to be named. Doesn't seem intuitive to me, but
maybe people are used to that?

e Field ordering: the custom fields have the notion of 'ordinal' which is the order they
appear when displayed as sets, and is configured when the fields are defined. But
maybe this database feature is no longer required and we can drop the concept if we
permit drag/drop. Or maybe we internally keep this and use the drag/drop to silently set
ordinality behind the scenes.

e |Instead of drag/drop, could customization be done in some other way: on a layout
builder panel, for example, like bot_wtc does? Would the Widget library help us here to
permit blocks and fields to be reordered and grouped more easily?

e Should customization be permitted per user or per group? Should it be an admin-only
task, for example, so an admin (Managing Editor or higher) sets up the 'workflow' for all
users of each particular privilege level? Or should all users be able to set it up to their
liking?

e |[f we lose the Custom fields block, the callback will disappear, which kills off third party
CF solutions like glz_customfields. This may not be an issue if we can figure out how to
migrate users somehow, because | think it's the only plugin that uses the callback. Need

to find a way to figure this out as we only officially upgrade the 10 text fields out of the
gate so some "pre-parsing" plugin or a way of exporting the current glz_custom_fields
field types so they can be imported into the new structure needs to be considered.

e What about custom scripts that glz_custom_fields offers? Do we consider offering the
same feature in core? Maybe just a callback when each field is displayed/saved is
enough?

Please put ideas, solutions and/or further concerns for discussion here...
e Need to carefully define allowed characters for field name (assuming alphanumeric Latin

and underscore at this stage), especially since this has i18n implications with multi-byte
characters.

	Textpattern custom fields
	Features, constraints and conventions
	
	Database tables
	Table: txp_meta
	Table: txp_meta_options
	
	Tables: txp_meta_value_*

	PHP objects
	ContentType
	DataType
	Field
	FieldSet

	Data workflow
	Tag considerations
	Field handling - admin side

