
Support for partitioning and table
formats

1) Rational
Modern analytics query engines usually work by querying open format data files laid out on
some kind of storage medium. This comes with an abstraction, called the table, that groups files
sharing a common schema and thus queryable consistently. There are multiple technologies to
organize files into tables, called table formats. One of the key features of these formats is to
further subdivide the file set contained in the table into partitions that allow to quickly prune
files that will not be relevant in the context of a given query.

Some table formats are simply “agreed upon” file layouts: the most common example would be
Hive partitioning, which structures files in folders such as
year=2021/month=08/day=30/yourfile.csv. Others are more complex standards such as
Delta or Iceberg.

The objective of this document is to propose the right abstraction to allow Datafusion to be
extended to support any of these technologies on any kind of storage (file system or object
store).

2) Some existing technologies
Let us start by a very brief tour of some common table formats.

a) Internal catalog
Many database systems maintain the table and partition metadata in an internal format (possibly
in memory). For instance ElasticSearch keeps the information about its shards on the master
node. This allows them to provide very low latency scheduling and often also ensure other write
related features such as consistency.

b) Raw Hive partitioning
As mentioned above, it is usual to structure files on a filesystem or an object store by partition.
Probably the most commonly used layout is what is often referred to as Hive Partitioning:



mybucket/myprefix/date=2019-01-01/file001.parquet

…
mybucket/myprefix/date=2019-01-01/file096.parquet

…
mybucket/myprefix/date=2021-08-27/file096.parquet

The “date” here can be seen as an extra column in the dataset. All rows in all files in the same
folder share the same value for that field. If you specify in the query a filtering condition such as
“date>=2021-08-01”, the query planning doesn’t even need to list the files in folders that don’t
fulfill that condition. This is a very basic instance of partition pruning.

But the file layout might also be a bit different. One very common case is the output of AWS
Firehose, where the bucket will look like this:

mybucket/myprefix/2019/01/01/00/68286a1e-c595-4092-9be7-efe1af153b4c.parquet

…
mybucket/myprefix/2019/01/01/23/30c196f0-2153-490e-8a08-53c4de31b596.parquet

…
mybucket/myprefix/2021/08/30/09/e9ffb9c7-7f27-417f-ae14-16548f35bfab.parquet

Most query systems only support the traditional Hive partitioning.

These partitionings can contain any file type (Parquet, CSV, Avro…).

This partitioning is self defining, meaning that it is encoded in the folder structure itself and can
be discovered by simply using the listing capabilities of the file system / object store. But it can
also be indexed by a Hive catalog, which stores the path to each partition with metadata about
the content into a separate database.

Note for object stores: object stores are not fully featured file systems, and usually don’t
structure files into directories. To discover the partitions dynamically, you need the capability on
the object store to list the “folders” encoded in the object keys. This is required to build a list of
partitions that can be pruned first and avoid listing all the files stored in the table (the number of
files quickly rises to 100s of thousands for typical ETL tasks).

c) Delta / Iceberg
Advanced table formats exist that allow more efficient partitioning pruning and provide other
features such as atomicity or time travel.

These standards use metadata files that contain the list of data files for the table along with
metadata like statistics and partitioning structure.



Iceberg supports multiple file types for the table data (Parquet, ORC, Avro), Delta mostly
focuses on Parquet.

3) Current Datafusion abstractions
Let us now review the main traits in Datafusion that are somewhat related to the notion of table.

CatalogProvider and SchemaProvider
The catalog and schema providers focus on the organization of tables and databases and are
not at the partition level.

TableProvider
The TableProvider is that abstraction that is stored by the TableScan variant of the logical plan.

pub trait TableProvider: Sync + Send {

fn as_any(&self) -> &dyn Any;

fn schema(&self) -> SchemaRef;

fn table_type(&self) -> TableType {

TableType::Base

}

fn scan(

&self,

projection: &Option<Vec<usize>>,

batch_size: usize,

filters: &[Expr],

limit: Option<usize>,

) -> Result<Arc<dyn ExecutionPlan>>;

fn statistics(&self) -> Statistics;

fn has_exact_statistics(&self) -> bool {

false

}

fn supports_filter_pushdown(

&self,

_filter: &Expr,



) -> Result<TableProviderFilterPushDown> {

Ok(TableProviderFilterPushDown::Unsupported)

}

}

Currently TableProvider implementations are structured by file type (ParquetTable, CsvFile,
NdJsonFile). To select the files to be processed, they take a path and a suffix and call a
common util to list the files, common::build_file_list(path,suffix).

ObjectStore
Object store is a new abstraction to allow reading files both from the file system and remote
object stores.
pub trait ObjectStore: Sync + Send + Debug {

async fn list_file(

&self,

prefix: &str,

) -> Result<FileMetaStream>;

async fn list_dir(

&self,

prefix: &str,

delimiter: Option<String>,

) -> Result<FileMetaStream>;

fn file_reader(&self, file: FileMeta) -> Result<Arc<dyn ObjectReader>>;

}

4) Core problematic
Where/when should we query the table format to get:

- the list of files to be processed
- the metadata of the partitions (statistics…)

5) Solution chosen by Spark
From this article that presents the Spark SQL optimization pipeline nicely:

https://github.com/apache/arrow-datafusion/pull/950
https://www.linkedin.com/pulse/catalyst-tungsten-apache-sparks-speeding-engine-deepak-rajak/?articleId=6674601890514378752


Spark positions the catalog resolution at the level of the Logical Plan. It has an extra state for
the query that is not present in DataFusion: the Unresolved Logical Plan.

It is during the analysis phase that Spark checks that the Unresolved Logical Plan is valid
regarding the schema.

6) Proposition for Datafusion

The possible stages at which we could query the table format are:
a) Create a new abstraction like the Spark Unresolved Logical Plan and query the table

format while converting it to a logical plan
b) Upon creation of the TableProvider (not recommended)
c) During the LogicalPlan optimization (not recommended)
d) Upon conversion from LogicalPlan to ExecutionPlan
e) From the ObjectStore abstraction (not recommended)

As explained below, most solutions are not really viable. Only option a and option d should be
considered as potential candidates.

Option a: From an Unresolved Logical Plan abstraction
This introduces a new stage in the query planning before the logical plan as it is expressed
today in Datafusion. The two states of the logical plan would be similar, except that the resolved
one would be aware of the statistics.

Pros:
- To avoid transferring the list of files from the client to the scheduler in Ballista, we could

transfer the unresolved logical plan to the scheduler instead of the resolved one.1

- While resolving the logical plan, we could run the pushdowns until the table providers
which would thus also exist in two states: resolved and unresolved. This way the
resolved table provider itself would be aware of filter expressions and limits. This implies

1 In Ballista, the LogicalPlan is created in the client, transferred to the scheduler, converted to a
PhysicalPlan on the scheduler, then the PhysicalPlan is serialized and distributed to the
executors.



that the statistics in the logical plan could already contain the adjustments from the
partition pruning and could be sourced from the table format itself when possible.

- We can apply cost based optimizations on the logical plan. This should be easier to
implement because the logical plan represents a higher level of abstraction For instance
a logical aggregation node is much simpler than its physical representation that can be
splitted into multiple nodes, including repartitioning stages, as well as having multiple
implementations.

Cons:
- Currently the partitioning abstractions are only defined on the physical plan (fn

output_partitioning(&self)). Without those, shuffle boundaries cannot be
determined and the plan can’t be broken up to be distributed. This implies that the plan
must be converted into a physical plan before being distributed (cf Ballista). In that case,
the cost based optimizations (CBO) applied on the logical plan must also be
implemented on the physical plan to allow adaptive query execution (AQE).

- Adds an extra plan state which implies more boilerplate.

Note:
- In this setup, rule based optimizations are applied on the unresolved logical plan first but

can also be applied on the resolved plan. Cost based optimizations would be applied on
the resolved plan only.

- If we already applied the filter/limit pushdown when converting the Unresolved Logical
Plan into the LogicalPlan, we don’t need to pass the filter/limit expression to the
TableProvider.scan(...) method as the TableProvider will already know about the
filter/limit expressions.

Option b: Upon creation of the TableProvider (not recommended)

Pros:
- avoids adding a new abstraction for UnresolvedLogicalPlan

Cons:
- doesn’t play well with Ballista as this means that the list of files to be processed would

need to be transferred from the client to the scheduler
- You don’t have access to the filter expressions

Option c: During the LogicalPlan optimization (not recommended)

Pros:
- avoids adding a new abstraction for UnresolvedLogicalPlan

Cons:
- Strange because it means you cannot convert some logical plans to physical plans if

they are not optimized first

https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html


Option d: Upon conversion of the LogicalPlan to a
PhysicalPlan

This would likely require making the TableProvider.scan(...) method async.

Pros:
- This is the closest to the existing implementation where the file list is built when creating

the ExecutionPlan
- The logical plan does not load to much metadata which

- makes it simpler to reimplement in another language
- makes it lightweight for serialization

Cons:
- We need a schema to build a valid logical plan. If the schema is sourced from the table

format, this means that the table format will need to be queried once when creating the
logical plan to get the schema, then another time when converting the logical plan to a
physical plan to get the statistics and the file list.

- The statistics in the TableProvider don’t have access to the filter expressions. To have
properly prunable statistics, we need to move them and thus all cost based optimizations
(CBOs) into the physical plan. This is doable (as shown in #962) but is challenging as
the physical plan is much more complex than the logical one.

As shown above, table formats often support multiple data file formats. We have two
possibilities to accommodate this:

- Keeping the TableProvider implementations by file format: each table provider would
need to have a configurable table format provided. The file format information from the
TableProvider would not be useful for all table formats that know the format of their data
files.

- Making the TableProvider implementation by table format instead of file format. In many
cases (Hive Catalog, Delta, Iceberg), the logical plan could rely on the table format to
figure out which file format is used and generate the appropriate execution plan. For the
cases where the file format cannot be figured out (e.g. raw Hive partitioning) it could be
specified to the TableProvider as a parameter.

If we go for the second option, implementations of TableProvider would look like:
- ListingTableProvider, the classical table provider that gets the file list from the object

store / file system itself by using its listing capability. This could also support parsing and
pruning hive partitioned file layouts.

- ListingTableProvider::new(prefix: &str, file_format: enum,

partitions: &[String])

- The constructor takes the file format as parameter as the table provider is
not specific to a file type anymore.

- Specify the partitions you want to parse (empty array if no partitioning)
- ListingTableProvider.scan(...)

- The returned ExecutionPlan type depends on the file_format specified

https://github.com/apache/arrow-datafusion/issues/962


- DeltaTableProvider
- DeltaTableProvider::new(prefix: &str, timestamp_as_of:

Option<String>, version_as_of: Option<String>)

- The constructor can be configured with all the supported Delta options
such as time travel.

- ListingTableProvider.scan(...)

- Returns the ParquetTable implementation of ExecutionPlan
- Etc...

Option e: From the ObjectStore abstraction (not recommended)

This would be done by passing the filter expressions to the ObjectStore.list(...) method.

Cons:
- The ObjectStore abstraction is meant to be at a much lower level, only representing the

basic features of opening a file reader and listing files on a path. If the object store is
also in charge of the table format, that means that one specific implementation will be
required per table format (hive, delta, iceberg..) per infrastructure (fs, s3…).

Option b can be eliminated right away because we need the filter expressions when resolving
the Table Format to do the partition pruning.

Option c and option e are counter intuitive and break the meaning of the current abstractions.
They should thus also be discarded.

Option a and option d both make sense, but the implementation for option d seems more
straightforward.



Side notes:

Experience from buzz
In Buzz for now we have implemented a variant of solution A. It uses a specific abstraction
(CatalogTable) that resolves a given table format into serializable descriptions of
TableProviders. This workaround is specific to Buzz because it distributes a separate SQL query
to the workers instead of splitting one single plan as a typical query engine would.

Implementation sketch for option A
- Add a variant called UnresolvedTableScan to the LogicalPlan enum
- Trying to convert a LogicalPlan that contains an UnresolvedTableScan to a PhysicalPlan

fails
- Add a method ExecutionPlan.analyze(LogicalPlan) -> Result<LogicalPlan>.

Note that this is pretty similar to ExecutionPlan.create_physical_plan(...).

https://github.com/cloudfuse-io/buzz-rust/blob/master/code/src/datasource/catalog/mod.rs

