
Alternative Implementations of “Late 
Hydration” or “ipex” or “performantly 
redeploying PEX files by sharding their 
requirements” 
Comments Appreciated! 

Problem 
Redeploying pex files full of many extremely large 3rdparty requirements (tensorflow, etc) into 
our datacenter currently takes a very long time, since we upload them all at once into an internal 
artifact store, and then pull down the entire pex file (>1GB) before executing it. This slowness to 
redeploy then also affects multiple of our internal python development workflows and tooling for 
machine learning (including a Jupyter wrapper developed by @kwlzn) which depend on 
executing a pex file within the datacenter -- in that case, modifying any python source files in our 
monorepo currently requires waiting several minutes for changes to be usable within that 
Jupyter notebook. 

As far as we are aware, other users of pex who package large machine learning applications 
also suffer from this issue and do not have an easy workaround. 

Solutions Under Consideration 
A useful way to look at approaching the problem is on two sides: figuring out how to ship pex 
files without all the downloaded deps which avoid paying a huge upload/download cost at build 
time, and figuring out how to then get the right deps into the pex before it tries to run. 

Solution (Part 1): “Dehydrated” or “ipex”: pex files without deps 
embedded in the pex 
We would like to be able to ship around "dehydrated" pex files without 3rdparty requirements 
embedded in the pex, and resolve ("hydrate") them before executing the pex. This removes one 
half of the current process of synchronously waiting to upload and download 3rdparty 
requirements, and moves the remaining download part off the critical path of the entire redeploy 
process. 
 
This is half of what is implemented in https://github.com/pantsbuild/pex/pull/787 -- if the 
--dehydrated flag is provided, pex will then avoid putting any resolved requirements in the 
pex file, instead adding a dehydrated_requirements field to PEX-INFO with the exact 
versions of all transitive requirements. 
 

https://github.com/kwlzn
https://github.com/pantsbuild/pex/pull/787


Because the requirements to hydrate were already resolved when building the pex, we know all 
the exact versions of all the transitive dependencies to resolve before running the pex. With an 
extension of this, we can also avoid having to pull down large wheels onto the developer’s 
laptop, by doing some form of metadata-only resolve (also proposed by @kwlzn). This 
extension has not been implemented yet. 
 
While the method of doing “late hydration” can be done by another tool, it’s not clear that we can 
avoid the 3 phases of: 

-​ Downloading massive requirements to the developer’s laptop. 
-​ Uploading a massive pex file to our artifact distribution utility. 
-​ Pulling down the massive pex file into the deployment environment. 

without changes to pex such as the proposed --dehydrated flag in #787. 
 
Using constraints files with transitive requirements may be able to effectively address 
this requirement! 

Solution (Part 2): “Late Hydration”: resolving requirements just 
before runtime 
We would like to be able to run “dehydrated” or “ipex” pex files unmodified, for the usual 
reasons: because then we can avoid modifying the rest of our deployment workflow to do this, 
and the only required change would then be to just pipe in an option to create dehydrated pex 
files into pants for us to implement this. 
 
One particular implementation of this which should not be used directly is in #787, which will 
resolve all dehydrated requirements every time the pex starts up. A modification proposed by 
@kwlzn is to treat it like the zip_safe attribute, and resolve the appropriate requirements the 
first time the pex is run. Note that the proposed --dehydrated flag would resolve all transitive 
requirements up front, so the resolve can be performed with transitive=False. 
 
The current implementation in #787 introduces a new environment var named 
PEX_BOOTSTRAP_HYDRATION_INDICES which provides pypi-like indices to resolve against 
at bootstrap time. This constrains the initial “late hydration” process to only specifying which 
indices to resolve against, compared to the breadth of resolver options normally available at 
build time. 

Alternative “Hydration” Solutions 
These are alternative solutions we’re considering for providing the “dehydrated” requirements 
when the pex is first run. 

Requirement(s) 
The implementation in #787 was a first draft of this functionality, and there was quite reasonable 
concern about introducing runtime requirement resolution to pex itself. For alternatives, there is 
at least one capability we would want to maintain compared to the pex-only solution: 

https://github.com/pantsbuild/pex/pull/787
https://docs.google.com/document/d/1glTqSc2aDO6yHDtHFAEZE2kgWOE0HXVi12mAZF4lZ_g/edit?usp=sharing
https://github.com/pantsbuild/pex/pull/787
https://github.com/pantsbuild/pex/pull/787
https://github.com/pantsbuild/pex/pull/787


1.​ We would like to make the resulting pex “self-contained”, i.e. runnable without a separate 
deploy script. By definition, executing a “dehydrated” pex would still require hitting the 
network at runtime, but only to hit a pypi-compatible index to resolve requirements. 

 
 

virtualenv 
As @illicitonion proposed previously and as @jsirois has proposed in #789, virtualenv can be 
used to provide the appropriate resolved requirements, especially once we align our resolver 
with pip’s. In particular, this comment: 

I'm still stuck back on why PEX is the right tool for the job at all here. It sounds like your 
requirements / acceptable actions include: 

1.​ It's ok to resolve pinned artifacts on the target host at PEX boot time. 
2.​ You want to resolve the minimal set of things. 
3.​ You want an isolated virtual environment. 

A virtualenv + a pinned requirements file with hashes and a pip install --no-deps 
--only-binary :all: --find-links=<internal flat repo> --index-url=<internal pypi> --requirement 
requirements.locked.txt does exactly what you want. Is it perhaps the case that its only because 
Pants does not support this that you want to jam this functionality into pex? 

To put a finer point on the last - with #781 in flight, the pex resolver will == the pip 
resolver. When Pants upgrades to pex 2.0.0 with the pip resolver, would pants generating a 
lockfile with hashes be enough here? You deploy the lockfile and run pip install .. which will do 
the minimal update. 

Open Questions 
-​ Is there a way to produce “dehydrated” pex files without pex intervention? 

-​ We may be able to make use of the alternate effort to support requirement 
constraints files to get the transitive resolve we want for the “dehydrated” part. 

https://github.com/pantsbuild/pex/issues/789
https://github.com/pantsbuild/pex/issues/789#issuecomment-553030393
https://github.com/pantsbuild/pex/issues/781
https://docs.google.com/document/d/1glTqSc2aDO6yHDtHFAEZE2kgWOE0HXVi12mAZF4lZ_g/edit?usp=sharing
https://docs.google.com/document/d/1glTqSc2aDO6yHDtHFAEZE2kgWOE0HXVi12mAZF4lZ_g/edit?usp=sharing

	Alternative Implementations of “Late Hydration” or “ipex” or “performantly redeploying PEX files by sharding their requirements” 
	Problem 
	Solutions Under Consideration 
	Solution (Part 1): “Dehydrated” or “ipex”: pex files without deps embedded in the pex 
	Solution (Part 2): “Late Hydration”: resolving requirements just before runtime 
	Alternative “Hydration” Solutions 
	Requirement(s) 
	virtualenv 



	Open Questions 

