Logarithms and Exponentials

- A function in the form $y = a^x$ is called an exponential function
- *e*^x is called the exponential function to the base *e*.
- $y = a^x \Rightarrow \log_a y = x$ "the base number stays the same, and the other two terms flip over"

Laws of Logs

- $\log_a x + \log_a y = \log_a xy$ (Squash)
- $\log_a x \log_a y = \log_a \frac{x}{y}$ (Split)
- $\log_a x^n = n \log_a x$ (Fly)
- $\log_a a = 1 \text{ eg } \log_8 8 = 1$
- $\log_e x$ is the same as $\ln x$ and is called the natural logarithm
- 'log' on a calculator stands for log₁₀ and 'ln' stands for log_e
- To solve an equation where the unknown is a power, you
 must take logs of both sides and use the 'fly' rule. It does not
 matter if you use log₁₀ or ln but if the equation involves an e
 then ln could be easier.

Examples

$$5^{x} = 11$$
 $e^{x} = 14$
 $\log_{10} 5^{x} = \log_{10} 11$ $\ln e^{x} = \ln 14$
 $x \log_{10} 5 = \log_{10} 11$ $x \ln e = \ln 14$
 $x = \frac{\log_{10} 11}{\log_{10} 5}$ $x = \ln 14 \text{ (since } \ln e = \log_{e} e = 1)$
 $x = 1.49 \text{ (to 2 d.p.)}$

Experimental Data

Must use the laws of logs to write in the form y = mx + c. See the notes for more detail.

Logarithms and Exponentials

- A function in the form $y = a^x$ is called an exponential function
- e^x is called the exponential function to the base e.
- $y = a^x \Rightarrow \log_a y = x$ "the base number stays the same, and the other two terms flip over"

Laws of Logs

- $\log_a x + \log_a y = \log_a xy$ (Squash)
- $\log_a x \log_a y = \log_a \frac{x}{y}$ (Split)
- $\log_a x^n = n \log_a x$ (Fly)
- $\log_a a = 1 \text{ eg } \log_8 8 = 1$
- $\log_e x$ is the same as $\ln x$ and is called the natural logarithm
- 'log' on a calculator stands for log10 and 'ln' stands for log,
- To solve an equation where the unknown is a power, you
 must take logs of both sides and use the 'fly' rule. It does not
 matter if you use log₁₀ or ln but if the equation involves an e
 then ln could be easier.

Examples

$$5^{x} = 11$$
 $e^{x} = 14$
 $\log_{10} 5^{x} = \log_{10} 11$ $\ln e^{x} = \ln 14$
 $x \log_{10} 5 = \log_{10} 11$ $x \ln e = \ln 14$
 $x = \frac{\log_{10} 11}{\log_{10} 5}$ $x = \ln 14 \text{ (since } \ln e = \log_{e} e = 1)$
 $x = 1.49 \text{ (to 2 d.p.)}$

Experimental Data

Must use the laws of logs to write in the form y = mx + c. See the notes for more detail.