CHAIN

COooP

RChain Platform Architecture

version 0.81, 2016-12-25

Ed Eykholt
Lucius Gregory Meredith
Jack Pettersson

Abstract

RChain’s platform architecture is a decentralized, economically sustainable public compute
infrastructure. The platform design results from the inspirations of earlier blockchains and
builds on top of the shoulders of giants in the disciplines of mathematics and programming
language design.

Intended audience: This document is primarily written for developers and other community
members who want further refine the platform design and help construct it and who want to
build applications and protocols on top of it.

Contents

Introduction
Comparison of Blockchains
Architecture Overview

Requirements
Architecture Approach

Pseudonymous Identity and Cryptography
Blockchain Data
Data Semantics

Data Storage
Addresses and Sharding/Compositionality
Namespace Definition and Policy
Contract Ownership, Transactions, and Messages
Rate-limiting Mechanism
Tokens

Contracts
Contract Execution Model, Rholang, and RhoVM
Validation and Casper Consensus Protocol

P2P Node Communications

SpecialK: Data & Continuation Access, Cache

Content Delivery Network

Attention and Reputation Economy

Applications

Contract Development & Deployment

Governance

Implementation Roadmap

Call for Participation

License

2 0of 23

Introduction

The RChain Cooperative and its partners are building a public, Sybil-resistant, and
censorship-resistant computing utility. This is an open source project. It will be a
blockchain-based platform for specifying, verifying, building, and running decentralized
protocols (“smart contracts”) that form the base for decentralized applications. On top of this
technology platform, a broad array of solutions can be built, including financial services,
monetized content delivery networks, marketplaces, governance solutions, DAOs, and
RChain’s own flagship decentralized social platform.

The decentralization movement is ambitious and will spawn solutions that provide awesome
opportunities for new social and economic interactions. Decentralization also provides a
counter-balance to abuses and corruption that occasionally occur in some organizations
where power is concentrated, including Ilarge corporations and governments.
Decentralization supports self-determination and the rights of individuals to self-organize.
Of course, the realities of a more decentralized world will also have its challenges and issues,
such as how the needs of international law, public good, and compassion will be honored.

We admire and respect the awesome innovation and intentions of the Bitcoin and Ethereum
creators, and other platforms that dramatically advanced the state of decentralized systems
and ushered in this new age of cryptocurrency and smart contracts. However, we also see
symptoms that those projects didn’t use the best engineering and mathematical models for
scaling and correctness in order to support mission-critical solutions. The ongoing debates
about Bitcoin scaling and the June 2016 issues with The DAO smart contract are
symptomatic of foundational architectural issues. As an example question: Is it scalable to
insist on an explicit serialization order for all transactions conducted on planet earth?

RChain’s requirements, originating from RChain’s decentralized social product and its
attention & reputation economy, are to provide content delivery at the scale of Facebook
along with support for transaction volume and speed at the scale of Visa. After due diligence
on the current state of many blockchain projects, after deep collaboration with Ethereum
developers, and after understanding their respective roadmaps, the RChain leadership
concluded that the current and near-term Blockchain architectures cannot meet these
requirements. Therefore, RChain and partners resolved to build a better blockchain
architecture. Together with the blockchain industry, we are still at the dawn of this
decentralized movement, and it is now the time to lay in a more correct architectural
foundation.

The journey ahead for those who share this ambitious vision is as challenging as it is
worthwhile, and this document summarizes that vision and how we seek to accomplish it.
We compare the blockchains of Bitcoin and Ethereum, outline the RChain architecture,
rationale for its creation, and pointers to initial specifications.

Comparison of Blockchains

This document assumes the reader is familiar with the basics of Bitcoin and Ethereum. As
one approach to introducing the architecture let’s compare the characteristics of Bitcoin,

Ethereum, and RChain as currently planned.

Blockchain —

| Feature

Semantic Data
Structure

Consensus
- Mechanism to
assure the network
of decentralized
nodes converge to
an agreement on
blocks.

- Finality (i.e.,
immutability,
irreversibility)

- Visibility

- History revision
mechanism
(i.e., normal but
rare events)

Sharding
- Concurrency

- Heterogeneity

Bitcoin

Blockchain

Proof of work

Probability of
transaction reversal
diminishes over time,
at each new block
confirmation.

global

Soft and hard forks

N/A

Homogeneous, i.e., not
sharded

Ethereum

Blockchain

Current: Proof of work.
Future: Casper,
stake-based betting on
blocks.

Probability of
transaction reversal

diminishes over time, at

each new block
confirmation.

Private or public
depending on deployed
instance.

Current: Soft and hard
forks.

Future: Block revisions
in case of temporary
network isolation.

Current: No
Future: Yes

Current: Homogeneous,
i.e., not sharded
Future: two-level

RChain

Blockchain

Proof of Stake.
Stake-based betting on
logical propositions.

Probability of transaction
reversal diminishes over
time, at each new block
confirmation.

Private or public
depending on namespace.

Block revisions in case of
temporary network
isolation.

Yes. Allows for concurrent
betting on and
committing of blocks that
don’t conflict.

Sharding of address space
allows clients to
subscribe to selected
address spaces without
downloading the entire
blockchain. Able to
impose different policies
such as maximum

- Number of Levels

- Basis for sharding

Concurrent VM

(i.e., whether
independent
transactions are
processed
simultaneously within
each shard.)

Block Confirmation
Time
Block Size

Maximum
Transaction or
Contract Size

Transaction
Throughput

Coins

Contracts:
- Computational
Power

- Runtime
Architecture

- Programming
Language

N/A

N/A

No

10 minutes

1MB
100KB

7 tx/sec

Bitcoin, plus tokens
such as provided by

Omni Layer

Stack-based language
with few instructions

Script runs on Bitcoin
Core, Libbitcoin, and

other native
implementations

Script

Future: two levels:
cluster + leaves

Address range

No

Current: 15 seconds

Dynamic

Dynamic based on gas

limit

25 tx/sec

Ether, plus tokens that

can be issued by
contracts.

Turing complete

Ethereum Virtual

Machine implemented
on multiple platforms

Solidity, Serpent, LLL and
any other languages
that get implemented

on the EVM.

transaction size on
different address ranges.

Arbitrary number of levels

Dynamic composable
sharding based on
namespace interaction

Yes. This makes
concurrent shards easier
to implement since there
are no assumptions on
synchrony.

Variable. Target is
sub-second
Dynamic

Dependent on shard’s
namespace policy.

Target is 40,000 - 100,000
tx/sec

Multiple tokens, including
AMPs

Turing complete

RhoVM implemented on
multiple platforms

Rholang and any other
languages that get
implemented on the
RhoVM.

Architecture Overview

The primary components of the architecture are depicted below:

Applications & Tools

Attention & Reputation Economy

Content Delivery Network

Lineartypes _ Token-based Contracts

System Contracts
Contract & Rho VM Services

Behavioral types I

Casper: Consensus Protocols
SpecialK: Data & Continuation Access
Datastore

Figure - The RChain Architecture

Like all “layer cake” views of architecture, this diagram is a simplification of the actual
architecture. At first glance, you’ll notice there are components expected in blockchain
architectures, but also components that might not be as expected All data managed by the
platform requires some associated payment. Of course, an application could also manage its
own data, and that data could be referenced via a pointer stored on the blockchain.

In addition to the datastore at the base of the architecture, a consensus protocol and
peer-to-peer gossip network form the foundation.

Above that, the SpecialK Data & Continuation Access and Cache layer is an evolution of the
existing SpecialK technology (including its decentralized content delivery, key-value
database, inter-node messaging, data access patterns, and privacy protecting agent model).

The Casper consensus protocols assure that nodes reach agreement about the contracts,
contract state, and transactions for which each node is interested.

Blockchain contracts (aka smart contracts, protocols, or programs) will be written in a new
domain-specific language for contracts called Rholang (or in contract languages that

6 of 23

compile to Rholang) and then executed on the Rho Virtual Machine on a number of native
platforms.

Smart Contracts include some essential system contracts as well as those providing
capabilities for tokens and application-supplied contracts.

A metered and monetized content delivery network (CDN) is enabled through token and
micro-payment contracts, accessing a mix of blockchain and off-chain data.

The Attention & Reputation Economy provides a model and set of interactions for motivating
respectful and economic creation and dissemination of information within social networks.

In the architecture, there will be several APIs, especially at the top layers. Typed APIs will
provide access to the RhoVM, Contract Services, and individual contracts. In addition other
APIs (including RESTful APIs) will be provided for accessing the CDN, and the Attention &
Reputation Economy.

We'll detail these components in the sections below, from the bottom-up. But first, let’s
discuss the requirements and software architecture approach motivating this platform
solution.

Requirements

Let’s look at the requirements for the platform from the vantage point of the developers
building applications on top of it. Then, let’s look at what is required of the platform itselfin
order to achieve those requirements.

Requirements of Application Developers

Fully decentralized

Tamper-proof blockchain for “immutable” history

Conserved quantities and VM state that is reliably replicated on different nodes
Support for multiple tokens

Ability to write predictably secure software contracts

Content Delivery Network that is metered and monetizable

Scalable

Architectural Requirements

Design with provably correct approaches

Data separation using namespace addressing to reduce data replication
Support for concurrent protocol execution

Sharded blockchain to reduce validator load and increase scalability
Distributed and decentralized

Minimal external dependencies

Peer-to-peer and discoverable nodes

e Consensus protocol that is computationally efficient and not resource-intensive
Non-Requirements

There is a long list of items the architecture will not address, but let’s list a few to dispel what
might otherwise be common misperceptions. For example, the architecture will not address:

e Compatibility with smart contracts or scripts written on other blockchain
technologies

e Automated coin conversion within the platform, since this can be better handled at
the application level

Architecture Approach

Building quality software is challenging. It is easier to hand-craft clever software; however,
the resulting software is often of poor quality, riddled with bugs, difficult to maintain, and
difficult to evolve. Inheriting and working on such software can be hellish for development
teams. Some project leaders are perfectly fine with this approach and even define “optimal”
project success as one that minimally solves requirements and that believe doing more is a
waste. We reject that methodology and minimal-success mindset when building a system as
important as a public computing utility which will serve as the basis for currencies and other
applications that are critical for society.

Therefore, we resolved to meet the requirements stated in the earlier section, and to:

Build quality software that implements well-specified protocols.
Build software based on software architecture patterns and other
correct-by-construction approaches.

e Take cues from mathematics. Use formal verification of protocols, leveraging model
checking and theorem proving.
Make evidence-based decisions with supporting rationale for design decision.
Choose functional programming paradigm, since it better enables distributed and
parallel processing.

e Apply best practices of software patterns, including compositionality.

Pseudonymous Identity and Cryptography

Like other Blockchains, RChain will use elliptic curve cryptography (ECC). The exact curve and
address formats have not yet been selected.

There are several areas in which cryptography is employed, including:

e Transaction signing

e Data encryption per channel
o based on Diffie-Hellman key exchange,
o within and across nodes, and
o in datastores

e Obscurity of keys and data in DHT

Blockchain Data

Data Semantics

Like Ethereum, the RChain blockchain will store contracts and their serialized state.
UTXO-style transactions will be implemented with simpler system-level contracts. Like
Bitcoin and Ethereum, tamper-proof blockchain semantics will be used to create a history of
blocks. The blockchain’s main purpose is to efficiently store essential state, any necessary
sequencing, and timestamping.

Note that the math underlying this blockchain semantic structure is known as a Traced
Monoidal Category. For more detail see Masahito Hasegawa's paper on this topic, Recursion
from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi.

The RChain design considers all storage “conserved”, although not all data will be conserved
forever. Instead, data storage will be leased and will cost producers of that data in proportion
to its size, contract complexity, and lease duration. Unlike Bitcoin and Ethereum, immutable
data is not promised to be truly forever; however, a very long lease duration is equivalent.

The simple economic reason justifying leasing is that storage must be paid by someone or it
cannot be maintained. We’ve chosen to make the economic mechanism direct. It is really an
environmentally unfriendly idea that storage is made "free" only to subsidize it by an
unrelated process. A small part of the real cost is measurable in the heat signatures of the
data centers that are growing to staggering size. This charging for data as it is accessed also
helps reduce "attack" storage, the storage of illegal content to discredit the technology.

A variety of data is supported, including public unencrypted json, encrypted blobs, or a mix.
This data can also reference off-platform data stored in private, consortium, public, or
obscure locations and formats.

http://www.kurims.kyoto-u.ac.jp/~hassei/papers/tlca97.pdf
http://www.kurims.kyoto-u.ac.jp/~hassei/papers/tlca97.pdf

Data Storage

Data will be accessed using the SpecialKk semantics and physically stored in a key-value
database. A given node can choose which address namespaces it cares about, so not all data
needs to be replicated in every node.

Addresses and Sharding/Compositionality

In contrast to other blockchains, where addresses are public keys (or hashes thereof),
RChain’s address space will be structured. This is similar to how both the Internet and the
web works, with IP addresses and URLs, respectively. A structured addressing approach
allows programs to talk about “location” in a much more nuanced and fine-grained way. This
design choice enables fast datalog queries based on those namespaces and better system
performance by analyzing communication patterns to optimize the sharding solution.

This sharding solution allows:
e Dynamic composable sharding based on namespace interaction
e Concurrent betting on and committing of blocks that don’t conflict.

e Clients to subscribe to select address spaces without downloading the entire
blockchain. Able to impose different policies such as maximum transaction size on

different address ranges.
e Arbitrary number of levels of address namespace.

For additional information, see Linear Types Can Change The Blockchain (pdf, lex, hangout video),
which describes the inspirational math and thinking in this area. Linear Types provide a nice
way to decompose the blockchain in a scalable fashion. It already has sharding semantics in
it, that is in the type system.

Namespace Definition and Policy

In order to support many of the use cases that users of Bitcoin find valuable as well as
broader use cases, namespace definitions will have a corresponding policy set that
constrains its use, for example by setting:
e maximum contract code size,
maximum data size,
minimum lease time,
maximum lease time, and
other parameters

With policies such as these, a namespace can be defined to provide better guarantees of fast
transaction speed and immutability, for example.

https://github.com/leithaus/pi4u/blob/master/ltcctbc/ltcctbc.pdf
https://github.com/leithaus/pi4u/tree/master/ltcctbc
https://plus.google.com/u/0/events/cmqejp6d43n5cqkdl3iu0582f4k

Contract Ownership, Transactions, and Messages

RChain’s contract accounts, transactions, and messages are analogous to those in
Ethereum.

Rate-limiting Mechanism

RChain’s VM will implement a rate-limiting mechanism that is related to some calculation of
processing, memory, storage, and bandwidth resources. This mechanism is needed in order
to recover costs for the hardware and related operations. Although Bitcoin and Ethereum
(gas) have similar needs, the mechanisms are different. Specifically, the metering will not be
done at the VM level, but will be injected in the contract code (via source-to-source
translation that is part of the compilation process').

Tokens

Somewhat similar to Omni Layer, multiple types of tokens will be supported. These tokens
will have different properties depending on their type, including parameters such as:

e supply (initial supply, supply growth function, and final supply),

e fungibility, and

e other properties

For each type of token, there will be a link between its class (i.e, its set of distinguishing
properties) and the rate-limiting mechanism.

Contracts

An RChain contract is a well-specified and well-behaved program that interacts with others.
Contract interaction with clients or other contracts is via transactions.

When the contract at a given state needs to be evaluated, it is read from the blockchain and
deserialized into RhoVM intermediate representation (IR) of the contract with its state
parameters. This is via a delimited continuation pattern. The RhoVM IR is compiled into
another VM format that is then executed. After the contract is run to its next transaction
state, the resulting state is serialized and again stored on the blockchain.

' Ethereum 2.0 is intending on following the same technique.

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html

Contract Execution Model, Rholang, and RhoVM

This section describes the essential requirement for decentralized concurrency in
Internet-scale applications, along with the compute models and programming languages
that best suit that requirement. Rholang is introduced, which is a behaviorally typed,
reflective, higher-order process language.

Concurrency Requirements

A platform supporting a global, decentralized compute utility that supports a wide variety of
applications must scale, and concurrency is essential to achieve that. Transactions that do
not interact must be able to complete at the same time, because to enforce a sequencing
constraint forces all nodes to process all transactions. Such a sequencing constraint is
essentially what causes blockchains in their current form to be fundamentally unscalable.

When we say “concurrency”, we’re not just talking about multi-threaded implementation of
functions, but handling of non-blocking I/0 and concurrent processes within and across nodes.
The Internet itself is built out of billions of autonomous computing devices each of which is
executing programs concurrently with respect to the other devices, but also concurrently on
the devices themselves, as most modern hardware supports native multi-threading
capability. Decentralization places special emphasis on the autonomy and independence of
devices and programs running on them. The APIs of centralized trusted third parties, which
programmers could pretend were part of a giant sequential computer, will become a thing of
the past. Even inside those organizations sequential architecture is giving way to lots and
lots of autonomously executing microservices.

Mobile Process Calculi

There are relatively few programming paradigms and languages that handle concurrent
processes in their core model. Instead, they bolt some kind of threading-based concurrency
model on the side to address being able to scale by doing more than one thing at a time.
Mobile process calculi provides one model, which weve chosen. They provide a
fundamentally different notion of what computing is. In these models, computing arises
primarily from the interaction of processes.

The family of mobile process calculi provides an optimal foundation for a system of
interacting processes. Among these models of computation, the applied m-calculus stands
out. It models processes that send queries over channels. This approach maps very well onto
today’s Internet and has been used as the tool of choice for reasoning about a wide variety of
concerns essential for distributed protocols.

Beyond this basic fit with the way the Internet computes, the mobile process calculi have
something else going for them: behavioral types. Behavioral types represent a new kind of
typing discipline that constrains not only the shape of input and output, but the permitted
order of inputs and outputs among communicating processes. Getting concurrency right is hard,
and support from this kind of typing discipline will be extremely valuable to ensure
end-to-end correctness of a large system of communicating processes.

Rho-calculus

Even a model based on the applied m-calculus and equipped with a behavioral typing
discipline is still not quite the best fit for a programming language for the decentralized
Internet, let alone a contracting language for the blockchain. There’s another key ingredient:
The rho-calculus, a variant of the m-calculus, was introduced in 2004 and provided the first
model of concurrent computation with reflection. Reflection is now widely recognized as a
key feature of practical programming languages. Java, C#, Scala, have eventually adopted
reflection as a core feature, and even OCaml and Haskell have ultimately developed reflective
versions. The reason is simple: at industrial scale, human agency is at the end of a very long
chain of programs operating on programs. Programmers use programs to write programs,
because without the computational leverage it would take too long to write them at
industrial scale. Reflection is one of the key features that enables programs to write
programs, providing a disciplined way to turn programs into data that programs can operate
on and then turn the modified data back into programs. Lisp programmers have known for
decades how powerful this feature is and it took the modern languages some time to catch
up to that understanding. The rho-calculus is the first computational model to combine all of
these core requirements: behaviorally typed, fundamentally concurrent, message-passing model,
with reflection. For details, see A Reflective Higher-order Calculus.

Rholang

Rholang is a fully featured, general purpose, Turing complete programming language built
from the rho-calculus. Rholang is RChain’s smart contract language. To get a taste of
Rholang, here’s a contract named Cell that holds a value and allows clients to get and set it:

http://www.sciencedirect.com/science/article/pii/S1571066105051893

data Request[a] = Get(Ch[a])
| Set(a)

contract Cell(client: Ch[Request[a]], state: Ch[al) = {
select {
case(Get(rtn) << client; value := state) {
rtn!(value)

}
case(Set(newValue) << client; value <- state) {
state!l(newValue)

)
)
)

The language is concurrency-oriented, with a focus on message-passing through channels.
Channels are statically typed and can be used as single message-pipes, streams or used to
store data. Similarly to typed functional languages, it supports algebraic data types and
deals with immutable values. It supports formal verification through the use of behavioral

types.

A document introducing Rholang in more detail is being produced.

RhoVM

The compiled RholLang contract is executed in a Rho virtual machine (RhoVM). This virtual
machine is derived from the computational model of the language, similar to other
programming languages such as Scala and Haskell. In other words, there will be a tight
coupling between Rholang and its VM, ensuring correctness. This VM is the machine that will
be executed by the compute utility, and we call it RhoVM. To allow clients to execute the VM,
we’ll build a compiler pipeline that starts with VM code that is compiled into intermediate
representations (IRs) that are progressively closer to the metal, with each translation step
being either provably correct, commercially tested in production systems, or both. This
pipeline is illustrated in the figure below:

Rholang
* 1. Simplification
RhoVM

* 2. Compilation

Delimited Continuations IR

¢ 3. Continuation passing

Lambda IR

* 4. OCaml compilation strategy

LLVM

CPUs

Figure - Rholang Compiler Pipeline

Let’s describe these steps in more detail:

1.

Simplification. From programs written in the Rholang contracting language or from
another contract language, this step includes: a) injection of code for the
rate-limiting mechanism, b) desugaring of syntax, and c) simplification for functional
equivalencies. The result targets the RhoVM IR. Note, the state of the RhoVM can be
serialized/deserialized to/from storage such as the blockchain.

Compilation. From the RhoVM IR to a Delimited Continuations IR.

Continuation Passing. From Delimited Continuations IR to a Lambda IR. This
compilation follows a translation pattern from delimited continuations to a
traditional continuation-passing style that has been proven correct.

OCaml Compilation Strategy. From code on a Lambda IR to LLVM, as in the OCaml
compiler. Note that LLVM Core libraries provide a modern source- and
target-independent optimizer, along with code generation support for many popular
CPUs.

For more details see the #rho-lang channel on the RChain Slack (here or join). Early compiler
work can be seen on GitHub and discussion on Gitter.

Formal Specification

Rholang will be formally specified, and we are investigating a few frameworks such as
K-Framework to achieve this.

https://synereonet.slack.com/messages/rho-lang/details/
http://slack.synereo.com
https://github.com/weeeeeew/rholang
https://gitter.im/synereo/rholang
http://www.kframework.org/

Model Checking, Theorem Proving, and Composition of Contracts

In the RhoVM and potentially in upstream contracting languages, there are a variety of
techniques and checks that will be applied during compile-time and runtime. These help
address requirements such as how a developer and the system itself can know a priori that
contracts that are well-typed will terminate.

Formal verification will assure end-to-end correctness via model checking (such as in SLMC)
and theorem proving (such as in Pro Verif). Additionally, these same checks can be applied
during runtime as newly proposed assemblies of contracts are evaluated.

Discovery Service

An advanced discovery feature that will ultimately be implemented enables searching for
compatible contracts and assembling a new composite contract from of other contracts.
With the formal verification techniques, the author of the new contract can be guaranteed
that when working contracts are plugged together they will also work together.

Validation and Casper Consensus Protocol

Nodes that take on the validation role have the function to achieve consensus on the
blockchain state. Validators also assure a blockchain is self-consistent and hasn’t been
tampered with and protect against Sybil attack.

The Casper consensus protocol includes stake-based bonding, unbonding, and betting cycles
that result in consensus. The purpose of a decentralized consensus protocol is to assure
consistency of blockchains or partial blockchains (based on shards), across multiple nodes.
To achieve this any consensus protocol should produce an outcome that is a proof of the
safety and termination properties of class of consensus protocols, under a wide class of fault
and network conditions.

RChain’s consensus protocol uses stake-based betting, similar to Ethereum’s Casper design.
This is called a “proof-of-stake” protocol by the broader blockchain community, but that label
leads to some misperceptions including overstated centralization risks. Validators are
bonded with a stake, which is a security deposit placed in an escrow-like contract. Unlike
Ethereum’s betting on a whole blocks, RChain’s betting is on logical propositions. A
proposition is a set of statements about the blockchain, for example: which transactions (i.e.
proposed state transitions) must be included, in which order, which transactions should not
be included, or other properties. A concrete example of a proposition is: “transaction t should
occur before transaction s” and “transaction r should not be included”. For more information,
see the draft specification Logic for Betting on Propositions (v0.7).

https://docs.google.com/document/d/1x0-fUU1dK9CT79GUqYUOoejfqY3bNckDcXgIbBTkfkc/edit#heading=h.jzluq1kbohwq
https://docs.google.com/document/d/1x0-fUU1dK9CT79GUqYUOoejfqY3bNckDcXgIbBTkfkc/edit#heading=h.jzluq1kbohwq

At certain rendezvous points validators compute a maximally consistent subset of
propositions. In some cases, this can be computationally hard and take a long time. Because
of this a time-out will exist, which, if reached forces validators to submit smaller
propositions. Once there is consensus among the validators on the maximally consistent
subset of propositions, the next block can easily be materialized by finding a minimal model
under which the propositions are valid.

Because of this design and because of the concurrency enabled by sharding of the address
space, consensus can be reached for a huge number of transactions at a time.

Let’s walk through the typical sequence:

1. Avalidatoris a node role. Validators each put up a stake, which is akin to a bond, in
order to assure the other validators that they will be good actors. The stake is at risk if
they aren’t a good actor.

2. Clients send transaction requests to validators.

Receiving validators then create a proposition including a recent transaction.

4. There are sets of betting cycles among nodes:

a. Theoriginating validator prepares a bet, which includes the following:
- source = the origin of the bet
- target = the destination or target for the bet
- claim = the claim of the bet. This is a block, a proposition, or maximally
consistent subset of propositions
- belief = the player’s confidence in the claim given the evidence in the
justification. This is a denotation of the betting strategy used by the validator.
- justification. This is evidence for why it is a reasonable bet.
The validator places the bet.
The receiving validator evaluates the bet. Note, these justification structures
can be used to determine various properties of the network. For example, an
algorithm can detect equivocation, or create a justification graph, or detect
when too much information is in the bet. Note how attack vectors are
considered, and how game theory discipline has been applied to the protocol
design.

5. The betting cycles continue working toward a proof. Note:

a. The goal of the betting cycle is for the validator nodes to reach consensus on a
maximally consistent set of propositions.

b. A prerequisite condition for the proof is that % of the validators are behaving in
a reasonable fashion.

c. Eventually the betting cycle will and must converge.
The processing is partially synchronous during convergence.

e. With by-proposition betting, the design will be able to synthesize much bigger
chunks of the blockchain all at once.

f. Cycles can converge quickly when there are no conflicts.

w

g. The point of the by-proposition approach is that several blocks can be
materialized all at once. This proposal gets around block size limits. There's no
argument about it because the maximal consistent set of propositions might
allow for hundreds or even thousands of blocks to be agreed all at once. This
will create a huge speed advantage over existing blockchains.

h. Foreach betting cycle a given validator node may win or lose their bet amount.

i. Scalability is achieved via a fine-grained sharding of proposals and via nesting
(recursion) of the consensus protocol.

6. Blocks are synthesized by the protocol when there is agreement on the set of
maximally-consistent propositions, and this occurs when there is a proof of
convergence among the bets. The current betting cycle then collapses.

For additional information, see:

e Consensus Games: An Axiomatic Framework for Analyzing and Comparing a Wide
Range of Consensus Protocols.

e For more detail on RChain’s consensus protocol, see Logic for Betting -- On betting on
propositions

e To find out more about Ethereum’s Casper and discussions in the Ethereum Research
Gitter and Reddit/ethereum.

e The math underlying the betting cycle is an Iterated Function System. Convergence
corresponds to having attractors (fix-points) to IFS. With this, we can prove things
about convergence with awards and punishments. We can give validator-node-betters
maximum freedom. The only ones that are left standing are validators that are
engaged in convergent betting behavior.

P2P Node Communications

Similar to other decentralized implementations, this component handles node discovery,
inter-node trust, and communication.

A number of other platform-level protocols will be developed, such as those related to
security, node trust, and communications.

SpecialK: Data & Continuation Access, Cache

The current "RChain 1.0" technology stack delivers a decentralized CDN. Its primary
component is SpecialK, which sits on top of MongoDB and RabbitMQ to create the
decentralized logic for storing and retrieving content, both locally and remotely.

SpecialK implements distributed data-access patterns in a consistent way, as shown below.

https://docs.google.com/document/d/1deIKXXHk6mbvT7dwzihRhHIhwjknLh0rMro-bEr-pek/edit#heading=h.g6rb76d59z0t
https://docs.google.com/document/d/1deIKXXHk6mbvT7dwzihRhHIhwjknLh0rMro-bEr-pek/edit#heading=h.g6rb76d59z0t
https://docs.google.com/document/d/1ZHaCXMlDZv-okGcRJ6P4-zWdqVDJSe-9bvEZe9jwpig/edit#
https://docs.google.com/document/d/1ZHaCXMlDZv-okGcRJ6P4-zWdqVDJSe-9bvEZe9jwpig/edit#
https://gitter.im/ethereum/research
https://gitter.im/ethereum/research
https://www.reddit.com/r/ethereum

Item-level read Database read Pub/sub Pub/sub with
and write and write messaging history
(distributed
locking)
Data Ephemeral Persistent Ephemeral Persistent
Continuation (K?) Ephemeral Ephemeral Persistent Persistent
Producer Verb® Put Store Publish Publish with
history
Consumer Verb Get Read Subscribe Subscribe

Figure - Persisted, Continuation-based Data Access Patterns for SpecialK

A view of how two nodes collaborate to respond to a get request is shown below:

check cache
S—
b

kvd In memory e —
cache In memory kvdb
cache
RabbitMQ)
RabbitMQ scala runtime
JVM
JVM
—

RabbitMQ

get request
get response

RabbitMQ
Queue

G
publish

Figure - Decentralized data access in SpecialK

1) The first node checks its in-memory cache, then if it is not found 2) checks its local store,
then if it is not found stores a delimited continuation at that location, and 4) checks the

2 Note that by convention a continuation function is represented as a parameter named k.
3 This is only a subset of the verbs possible under this decomposition of the functionality. The verb fetch,
for example, gets the data without leaving a continuation around, if there is no data available.

network. When the network returns data, the delimited continuation is brought back in
scope with the retrieved data as its parameter.

With the RChain platform, the implementation of the CDN will also evolve, although not in its
fundamental design.

Content Delivery Network

This layer will track access and storage of content. Software clients will be required to pay for
creation, storage, and retrieval of all content delivered to/from the CDN, via
microtransactions. Since storing and retrieving content is not free, why should a technical
solution make it free to users like centralized solutions that subsidize the cost in indirect
ways? With the promise of micropayments, the RChain platform can more directly charge for
the storage and retrieval of content.

Attention & Reputation Economy

From a user-centric perspective, this economy aims to directly but unobstructedly allow
value to be placed on the content’s creation, consumption, and promotion. This applies to
many types of content. For example, a short textual post is created, sent to an initial
distribution list, read, promoted (liked), and made available to even more readers. Or, a short
movie can go through the same workflow. Along these paths, attention is given, and rewards
can flow back to the content originator and to promoters. Based on one’s own engagement
with the content exchanged to/from one’s connections, each connection’s reputation is
computed. The reputation rank can be used subsequently to present content in a manner
consistent with how the user has demonstrated attention in the recent past.

Endorserment, Promotion,
philanthrogpy, advertising,
patronage, labbying

freemium

Heroisrmi, merit, word of mouth,
virality, celebrity, search ranking

Figure - Attention & Reputation Economy Concept

For more information, see the original whitepaper, RChain: The Decentralized and Distributed
Social Network. The latest thinking about Attention & Reputation Economy will be described in
Slack discussions and blog posts.

Applications

Any number and variety of applications can be built on top of the RChain Platform that

provide a decentralized public compute utility. These include, for example:
o Wallets

Exchanges

Oracles & External Adapters

Custom Protocols

Smart Contracts

Smart Properties

DAOs

Social Networks

Marketplaces

Several application providers are already committed to this platform, including RChain for its
social product, LivelyGig for its marketplaces, weWOWwe for its sports-based social network,
and Nobex Radio for a to-be-announced product.

Contract Development & Deployment

The purpose of this next discussion is to illustrate how namespaces allow for heterogeneous
deployment of contracts and contract state. Namespaces is one of the crucial features for
sharding, and with that we get the benefits analogous of sidechains, private chains,
consortium chains, as well as the distinction between test and production, all under one
rubric.

For example, the following diagram depicts some of the possible development, test, and
deployment configurations and considerations, and how release management is enabled
using namespaces and sharding.

http://www.synereo.com/whitepapers/synereo.pdf
http://www.synereo.com/whitepapers/synereo.pdf
http://www.livelygig.com
http://wewowwe.com/
http://www.nobexpartners.com/

Integrated Development Local Test Pre-Production

Environment Configuration Configuration Configuration

- Rholang and others

- Editor

- REPL

- Build

- Debugger

- Rholang Model Checker
- Rholang Theorem Prover

Runtime Runtime
Application Source Code —{ Application Application————
Code Code
Rholang Testing and Testing and
Source Code for Contract Release Process Release Process
Compilation with signing with signing

Blockchain Private,
Contract Code Private . Consortium, or Consortium, or

& Namespace Public

Blockchain Private,

Contract State Local Consortium, or Consortium, or
Namespace Public

Token: Test Test

Figure - Development & Deployment Possibilities

We’ll collaborate with IDE tool vendors to integrate Rholang and validation tools.

Governance

Like other open source and decentralized projects, and especially those involving money and
blockchains, the RChain Platform components will require they be created, tested, released,
and evolved with great care. RChain’s leadership fully intends to help define these

governance processes and to empower a public community to enforce them.

Implementation Roadmap

The RChain roadmap is currently being developed. Major milestones may include the

following:
Programming model and execution
rholang 1.0

rhovm 1.0

Blockchain |

bet-by-proposition Casper-style proof of stake
blockchain storage

Blockchain Il
Metering
Token

Content delivery
basic query & update model

Attention economy

post as contract model
AMP and REO as stochasticity

Call for Participation

We invite you to participate in RChain's Slack channels, joining via http://slack.rchain.coop.

We need a variety of talent, but most urgently programmers with solid computer science,
formal methods, and ideally experience with mobile process calculi and functional
programming. Or, individuals who can demonstrate their ability to quickly learn these
disciplines.

We need investors to help fund the building out this architecture. Note that there are many
forward-looking statements in this document, and are subject to many risks. Contact Lucius

Gregory Meredith <|greg.meredith@gmail.com> and / or Ed Eykholt
<ed.eykholt@livelygig.com> for more information.

License

This document is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/

The technology stack has a variety of licenses as visible in GitHub. These are primarily
Apache 2.0.

http://slack.rchain.coop
mailto:lgreg.meredith@gmail.com
mailto:ed.eykholt@livelygig.com
https://creativecommons.org/licenses/by/4.0/

	RChain Platform Architecture
	Abstract
	Contents
	
	
	Introduction
	Comparison of Blockchains
	
	Architecture Overview
	Requirements
	Architecture Approach
	Pseudonymous Identity and Cryptography
	Blockchain Data
	Data Semantics
	Data Storage
	Addresses and Sharding/Compositionality
	Namespace Definition and Policy
	Contract Ownership, Transactions, and Messages
	Rate-limiting Mechanism
	Tokens

	Contracts
	Contract Execution Model, Rholang, and RhoVM
	Concurrency Requirements
	Mobile Process Calculi
	Rho-calculus
	Rholang
	RhoVM
	Formal Specification
	Model Checking, Theorem Proving, and Composition of Contracts
	Discovery Service

	Validation and Casper Consensus Protocol

	P2P Node Communications
	SpecialK: Data & Continuation Access, Cache
	Content Delivery Network
	Attention & Reputation Economy
	Applications
	Contract Development & Deployment
	Governance
	Implementation Roadmap
	Call for Participation
	License

