Snell's Law HW

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n = \frac{c}{v}$$

- **1.** A ray of monochromatic light ($f = 5.09 \times 10^{14} \text{ Hz}$) traveling in air is incident on an interface with a liquid (n = 1.4) at an angle of 45.°.
- a) Find the angle of refraction _____

- **b)** Draw the refracted ray
- c) Draw the reflected ray.

2. If the angle of incidence in air is $30.^{\circ}$, what is the angle of refraction in <u>crown glass</u>?

Draw the refraction diagram (be sure to include the reflected beam)

3. The diagram below shows a ray of light passing from medium X into the air.

What is the absolute index of refraction of medium X?

(Questions 4,5) A monochromatic beam of yellow light, *AB*, is incident upon a Lucite block in air at an angle of 33°. Find the angle of refraction. Draw the refracted ray

Base your answers to **questions 6 - 8** on the information and diagram below. In the diagram, a light ray, *R*, strikes the boundary of air and water.

6. Using a protractor, <u>determine the angle of incidence</u>. (hint: Draw the normal first)

7a. Use Snell's Law to find theta 2 (refraction angle)

7b. Using a protractor and straightedge, find and draw the refracted ray on the diagram below

(8 - 10) The diagram below shows a ray of monochromatic light ($f = 5.09 \times 10^{14}$ hertz) passing through a flint glass prism.

8. Calculate the angle of refraction (in degrees) of the light ray as it enters the air from the flint glass prism.

- **9.** Using a protractor and a straightedge, construct the refracted light ray in the air on the diagram
- **10.** What is the speed of the light ray in flint glass? (answer in scientific notation)