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What if we are able to predict movement? 

Abstract 

Human movement prediction is a complex yet necessary task researchers are 

starting to work on. Although several studies regarding this exist, none have been entirely 

successful in generalizing results. Furthermore, there is no standardized proposed way to 

deal with human movement data. Therefore, this study will focus on developing a 

standardized preprocessing approach for human movement data, which will be tested using 

the most complex type of movement, namely dance. The main problems faced when 

preprocessing such data are the coordinate detection, missing values, value range, 

combination with extra features, and the model input preparation. The AIST Dance 

Database is used to test this. The proposed framework addresses all issues mentioned 

above. 
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Introduction 

 

Figure 1: Transformed Human By Computer 

Human movement prediction consists of capturing and synthesizing human 

positions or positional changes so models can understand them correctly. The first and 

critical step for human movement generation is to preprocess the data optimally. Many 

papers have attempted to predict movement, and each has preprocessed the data in its own 

way. However, none have been able to generalize or adapt their preprocessing to all kinds 

of data. Therefore, this paper aims to develop a standardized technique for human video 

data, which all models will be able to process, focusing on those developed on PyTorch.  

An accurate and standardized preprocessing could open the doors to the rest of the 

community to develop more human movement models, which could disrupt the entire 

audiovisual industry, speeding up the process of creating choreographies for concerts, video 

clips, and other shows, consequently decreasing costs. It would also lead to shows and new 

combinations of movements, disrupting the dancing industry and challenging dancers, 

bringing them to their limits, and potentially spearheading human-computer collaborations. 

Furthermore, it could even affect the health industry, for instance, allowing to diagnose 

diseases through processing data derived from studying sizes and ways of walking. 

6 
 



What if we are able to predict movement? 

The following will first analyze previous research and the techniques used, which 

will be tested, and their pros and cons will be analyzed and discussed. Finally, each 

technique's optimal combination and adaptation will be used for this research. Furthermore, 

some models will be tested to verify that they can process the data under the final proposed 

preprocessing framework. 

Literature Review 

There have already been some developments regarding choreography generation in 

past research studies. However, they have not incorporated the audio mapping. They have 

only continued generating random movements from a given movement sequence 

(Crnkovic-Friis & Crnkovic-Friis, 2016) or have been unable to generalize enough to be 

used in songs that have not been included in the training set (Alemi et al., 2017). Hence, a 

new development in this area could advance the state of these models and potentially 

improve the audiovisual industry. An overview of the previously used techniques and 

research projects relevant to this discussion will be provided. 

The following areas have been researched as the fundamental building blocks of this 

research: 

1.​ Animation: The use of mocap to define human key points, low dimensional 

Kalman Smoothing for missing values, COCO standard for mocap. 

2.​ Audio Analysis: VGG-19 for feature extraction and Mahalanobis distance 

for clustering. 

3.​ Human Movement Classification: farimotion for clustering, PCA and PPCA 

for dimensionality reduction. 

4.​ Body Movement Generation from the Previous Movement: RNNs for 

predicting and the transformation from 2D coordinates to 3D. 
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5.​ Body Movement Generation from Audio: They have not been successful 

with generalizing. 

Animation 

One of the applications of animation that is of interest for this project is video 

games. Video game designers need movement and behavior to seem as natural as possible. 

Hence, they deal with movement analysis, generation, and interpolation.  

A common practice in this area that could be useful for developing this study is 

mocap data. Mocap data is generated by many open-source algorithms striving to detect the 

key points of humans in videos (hips, chest, neck, head, collars, shoulders, elbows, wrists, 

knees, and ankles), also referred to as markers (Meredith & Maddock). The COCO key 

point dataset is the standard for training such models, which annotates 12 body and five 

facial key points per identified human, having 17 key points in total (Papandreou et al., 

2018).  

One of the most common algorithms implemented in python is Pose Estimation, 

which "employs a convolutional network which learns to detect individual key points and 

predict their relative displacements, allowing us to group key points into person pose 

instances" (Papandreou et al., 2018). However, one of the main challenges this model 

presents for further modeling is the absence of some markers while preprocessing, which 

gives missing values that need subsequent estimation. To estimate these values, low 

dimensional Kalman smoothing is one of the best approaches, as it reduces error variability 

and can estimate missing markers, even for many frames (Burke & Lasenby, 2016). This 

technique requires many frames with all marker positions to infer the missing key points 

through singular value decomposition (Burke & Lasenby, 2016).  
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Google also developed a model named BlazePose, which infers 33 key points, 

extending the standard list of 17 key points (COCO topology). The model goes through 2 

steps, first detecting the area of interest, in this case, the human, and then detecting the key 

points in the first frame and inferring these positions in the subsequent frames. The rest was 

inspired by Leonardo's Vitruvian man, predicting all the key points by creating a circle 

surrounding the whole person and having as center the hip midpoint. This model was 

mainly developed for fitness trackers and the community to create new applications 

(Bazarevsky & Grishchenko, 2020). This model's added value is that it can estimate the 3D 

point coordinate position of all 33 key points from one video. 

Audio Analysis 

One of the extra features that can be included in human movement prediction is 

audio, which could be helpful for choreographers. Multiple researchers have been working 

on audio analysis and feature extraction.  

One model that can be used for this matter is VGG-19, which was initially trained 

for image classification purposes (Simoyan & Zisserman, 2015). This model has 19 layers, 

composed of convolutional, max pooling, fully connected, and SoftMax layers. VGG-19 

performs significantly better than other convolutional networks as it provides increased 

depth and uses a smaller receptive field (the area the model is looking at) and stride 

(number of pixels it shifts to look at the whole image) (Simoyan & Zisserman, 2015). 

Furthermore, VGG-like networks have been used for audiovisual recognition, using similar 

architectures for audio and video inputs (Ramaswamy, 2020). The audio features are 

extracted through spectrogram generation, representing these sequences with time, similar 

to a TFR (time-frequency representation), having time along the x-axis, frequency along the 

y-axis, and color representing the strength of the frequency (Wyse, 2017). Using this as an 
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input for a convolutional network has shown improvements compared to manual feature 

extraction through Python libraries, such as librosa, for tasks such as generation and 

classification (Wyse, 2017). 

Furthermore, other applications that use audio features are created for classification 

and segmentation purposes, such as news segmentation or genre classification. Researchers 

have found that agglomerative clustering, a form of hierarchical clustering, using 

Mahalanobis distance or Kullback Leibler (KL2) distance gives the best results (Siegler et 

al.).  This algorithm treats each observation as a separate cluster and then pairs the closest 

cluster pair with one another until it creates a huge cluster composed of all observations. 

The similarity is measured with the distance one establishes, in this case with the 

Mahalanobis or Kullback Leibler.  

The Mahalanobis distance is calculated in a multivariate space, as opposed to the 

Euclidean distance. If the variables are entirely uncorrelated, both would have the same 

value, but if this is not the case, the Mahalanobis distance outperforms the Euclidean 

distance. Moreover, when many variables are involved, the Mahalanobis distance can deal 

with them easily, considering the covariance matrix when calculating the distance (De 

Maesschalck et al., 2000). Finally, the KL2 distance "is an information theoretic measure 

equal to the additional bit rate accrued by encoding random variable B with a code that was 

designed for optimal encoding of A" (Siegler et al.).   

Human Movement Classification 

Many applications aim to detect and classify human movement performing different 

tasks. One of the uses of human movement classification is used by robots when learning 

how humans move naturally. First, they detect the movement and learn which task they are 

performing to then be able to imitate it. 
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Aiming to develop state-of-the-art mocap data preprocessing, Facebook developed a 

library named fairmotion (Gopinath, 2020). One of their investigation areas was clustering 

such data and optimizing it. The proposed method uses a window of 5 frames and 

calculates the logarithmic kinetic energy per joint (Onuma et al., 2008). After this, they 

discovered that performing Principal Component Analysis (PCA) has the same results as 

more sophisticated dimensionality reduction techniques (Onuma et al., 2008). Furthermore, 

once this preprocessing is completed, they use the Euclidean distance and the standard 

clustering algorithms, such as agglomerative clustering (previously described), which give 

outstanding results for identifying whether a person is running or walking, or jumping. 

Another proposed approach is to measure the dimensionality of each set of frames. 

This approach assumes that more complex motions have higher dimensionality than simple 

actions, detected by using PCA or Probabilistic Principal Component Analysis (PPCA), an 

extension of PCA. The main difference is that it defines a probability model for PCA, 

enabling it to model the noise. The noise in traditional PCA is that variance that moves in a 

direction outside the subspace, which is usually removed, but PPCA models it through 

probability (Barbicˇ et al., 2004), giving better results. Through the PPCA approach, all 

framesets are modeled through Gaussian distributions and compared to other framesets 

regarding their dimensionality (Barbicˇ et al., 2004). This approach can detect long-term 

behaviors, such as the difference between walking and running. 

Body Movement Generation from the Previous Movement 

Several techniques have been developed regarding movement generation without 

considering extra features. The most relevant to this paper is ChorRNN, which predicts new 

dance sequences for a solo dancer given a previous movement sequence. ChorRNN is a 
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"deep recurrent neural network trained on raw motion capture data" composed of LSTMs 

(Crnkovic-Friis & Crnkovic-Friis, 2016).  

Moreover, there has been research to generate the next movement regarding 

different tasks, such as "walking, smoking, engaging in a discussion, taking pictures, and 

talking on the phone" (Martinez et al., 2017). One of the highlights of this paper is its 

preprocessing technique. They represent each pose "as an exponential map representation 

of each joint, with a special preprocessing of global translation and rotation" (Martinez et 

al., 2017). To predict the movements, they used a single gated recurrent unit (GRU) with 

1024 units and a decoder to project the higher dimension output of the GRU layers to the 54 

dimensions on their dataset, representing the human body markers. Additionally, they 

divide their prediction into two types: short- and long-term. For the short-term, they feed 

two seconds to predict the next 400 milliseconds, and for the long-term, they also feed two 

seconds to predict the next second. They used the "Euclidean distance, between the 

prediction and the ground truth" (Martinez et al., 2017) to evaluate the model. These 

techniques outperform previous work, especially in the case of the short-term model, and 

they discovered that being able to label the activities was very beneficial for model 

performance, allowing them to build one model per action. 

An additional paper, aiming to predict choreographic movement (dance) from the 

previous pose, also proposes a very interesting and completely different preprocessing of 

the raw videos. By filming the same video from different angles, the authors of the research  

estimated the 3D coordinates. They first detected the 2D coordinates and then calculated 

the 3D coordinates. However, as it is an estimation there are some key point coordinates 

that could not be recovered resulting in missing values (Li et al., 2021). Additionally, the 

paper  does not give the details of preprocessing times. However, it says that "running this 
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pipeline on a large-scale video dataset requires a non-trivial amount of compute and effort" 

(Li et al., 2021). To validate their technique, the researchers  measured the difference 

between the initial 2D coordinates they detected and the 2D points they reprojected from 

their 3D estimations, overall getting low differences and, therefore, good results. 

Body movement Generation from Audio 

Several projects have added the complexity of including  audio features to predict 

human movement, either for choreography prediction or even movement related to the 

playing of the violin. These first preprocess audio and video separately and then combine 

them. To do so the preestablished Python libraries allowing extraction of audio features, 

mainly librosa, were used. 

Regarding modeling, researchers have used a U-net architecture in more controlled 

environments involving the generation of violin playing movement, combining CNNS and 

LSTMs (Kao & Su, 2020). The U-net architecture was developed to get as many features as 

possible, so convolutional models could be trained with a smaller sample when performing 

biomedical segmentation problems. It has a contracting path, which extracts the features 

from the images and downsamples, and the expansive path, which upsamples the training 

set (Ronneberger et al., 2015). 

Furthermore, researchers have used conditional models involving choreography 

generation, most specifically, Factored Conditional Restricted Boltzmann Machines 

(FCRBM) combined with RNNs (Alemi et al., 2017). However, these have not been 

successful in the generalization phase, not being able to maintain performance when 

introducing audios not included in the training set. 
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Data & Methodology 

​ The following explains the end-to-end process of the project. This paper will focus 

on movement generation while also considering audio, aiming to test different 

preprocessing techniques and validate them. Using audio-related movement will allow 

testing the most complex form of movement, which is dance. This movement is complex, 

as there is no standard as for walking, and there is much creativity involved. The creativity 

leads to movements that a standard will not be able to predict, inserting some extra 

randomness into the movement the model should learn to take into account. Furthermore, 

the preprocessing and postprocessing will be adapted to make it easier for dancers to learn 

the choreography.  

Data 

The AIST Dance Video Database, "a shared database containing original street 

dance videos with copyright-cleared dance music" (Tsuchida et al., 2018), will be used for 

the rest of the project. This dataset is stored online and allows users to download all videos, 

only the audios, and filter by genre, dancer, or choreography through an API. However, 

they also give one the option of downloading it manually through their website. It contains 

13,939 dance videos comprising ten dance genres and 60 different music audios. Overall, 

40 professional dancers appear in these videos, 25 male and 15 female, performing solo and 

in groups choreographies and filmed from nine different angles (Appendix 1). The videos 

come in mp4 format and are divided into four groups: basic dance, advanced dance, group 

dance, and moving camera (Appendix 2). Moreover, 50 videos belong to one of three 

situations: showcase, cypher, and battle (Appendix 3). Initially, this database was created to 

foster tasks like dance-motion genre classification, dancer identification, and 

dance-technique estimation (Tsuchida et al., 2018).  
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A newer version of this dataset is AIST++, which provides the 3D human key 

points to the dataset described above (Li et al., 2021). This dataset with the 3D coordinates 

was constructed at 60 frames per second and considered all nine camera positions used in 

filming the videos from the AISTDB. Therefore, the dataset is reduced to 1,408 sequences. 

However, it still covers the same genres, audios, and dancers. Additionally, the creators 

allegate it is the "largest and richest existing dataset with 3D human keypoint annotations" 

(Li et al., 2021). This dataset can also be downloaded through an API or directly through 

the website. One can download the mocap data, the 2D coordinates, the 3D coordinates, or 

the camera data only to calculate the 3D coordinates. Moreover, they offer to download 

their train-test-split and the clean data to input into their developed model. 

 In the following, both datasets (the old and the new) will be tested to determine 

which one is better for the problem at hand. 

Methodology 

Approach 

As analyzed in the literature review, there is no standardized way to prepare the data 

for human movement generation. The models that deal with unstandardized movements, 

such as dance, are not entirely successful in generalizing with new movements or audio 

tracks. The proposed hypothesis for this issue is that there is a problem with the data input 

format. Different datasets are being employed, so the central hypothesis is that the problem 

is in preprocessing such data. Therefore, there will be several techniques tested in the 

following until reaching an end-to-end optimal preprocessing framework to predict 

movement with other features. 

This research deals with two different data types, namely audio and video data. Both 

of these come combined into the video, so the first steps consist in separating them and 
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preprocessing them accordingly. The videos come in mp4 format, which have been 

processed by separating the audio and the frames. The audio has been transformed and 

saved as both wav and mp3 format, the video has remained being mp4 but without the 

audio. After this, they must be combined most optimally. 

Audio Preprocessing 

The dataset entails 60 different audio tracks used to dance in different styles. None 

of the audios have lyrics, and they have very well-defined beats. In previous studies, 

researchers used librosa to extract features. However, the results have not been 

generalizable to new audio tracks, and the researchers do not provide enough evidence to 

draw meaningful conclusions. The hypothesis for this study is that there are many relevant 

features that libraries cannot capture. 

In order to see if more features can be extracted with other techniques, VGG-19 was 

used. This model extracts the features directly from the spectrogram of the audio. As 

mentioned in the literature review section, a spectrogram is similar to a TFR, graphically 

representing the relationship between time, frequency, and frequency strength (Wyse, 

2017). The VGG-19 model (Appendix 4), a CNN,  is then executed and extracts 25,088 

features. 

As an initial inspection, all audio tracks were processed to analyze the features 

extracted. Of the 25,088 initial features, 8,165 were kept after removing the constant ones. 

From these, PCA was performed to reduce dimensionality, and create clusters, to see the 

main differences between tracks. The number of components and clusters were treated as 

hyperparameters to create optimal clusters. Several combinations were tested, and three 

different metrics were measured: Silhouette,  Calinski Harabasz, and Davies Bouldin.  
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The Silhouette score ranges between -1 and 1 and measures the inter- and intra- 

cluster distances. This means it measures the distance between observations in the same 

cluster (intra-distance) and the distance between clusters (inter-distance). The closer the 

value is to 1, the better, as the intra-distance is minimized and the inter-distance maximized. 

If it is negative, it means it has been assigned to the incorrect cluster, as there exists another 

cluster, which is more similar to the observation, and if it is 0, it means clusters overlap. 

The Calinski Harabasz score measures the ratio between dispersions in clusters; the higher 

it is, the better. Lastly, the Davies Bouldin score measures the cluster diameter vs. the 

distance between cluster centroids; the lower it is, the better.  

After testing many combinations, it was found that the optimal combination was 

using five principal components and seven clusters, created through the Mahalanobis 

distance (De Maesschalck et al., 2000) and agglomerative clustering algorithm  (Siegler et 

al.). This combination gave a Silhouette score of 0.41, a Calinski Harabasz score of 59.31, 

and a Davies Bouldin score of 0.48. The five principal components explained 39% of the 

variance. Therefore, it can be concluded that many of the features generated by VGG-19 

are not relevant to differentiating between tracks.  

To further inspect these clusters, some manual characteristics through librosa 

(Appendix 5) were computed to understand if VGG-19 was also differencing those key 

features used by other researchers and whether it was detecting additional ones.  

Firstly, a multivariate analysis of variance (MANOVA) was computed to determine 

if the relationship between variables was related to the cluster to which they were assigned. 

It was concluded that the relationship was significant (Appendix 6). Therefore, it can also 

be concluded that VGG-19 detects all variables used in previous studies, so no previously 
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used features are lost. The next step consists of verifying if it adds value by measuring other 

valuable features. 

The averages of each variable grouped by their corresponding cluster were 

compared to measure the capturing of additional valuable variables. It was established that 

all clusters except for three could be isolated only through these variables (Appendix 7). 

Hence, the hypothesis remains, being that VGG-19 is capturing something else, not 

captured by those variables, which could potentially improve human movement generation. 

Video Preprocessing 

For the preprocessing of videos, there are two initial steps: 

1.​ Transform into tabular data. 

2.​ Decide whether to deal with the project as a classification or regression 

problem. 

Tabular Data Transformation 

In order to deal with the video data optimally and without consuming too much 

computational power, instead of using image data (frames), it is proposed to use tabular 

data. For this, all frames must be first transformed into tabular data. For this matter, three 

different alternatives were tested: 

1.​ Pose Estimation Algorithm: Although this option is easy to implement, it 

creates too many missing values when calculating the 2D coordinates. 

2.​ Google Blaze Pose: This option estimates the 3D coordinates and creates 

fewer missing values, but it is computationally expensive. 

3.​ AIST++: This dataset provides the 3D coordinates estimated by the camera 

positions and has a few missing values that can be easily inferred. 
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Pose Estimation 

The first method proposed is using Pose Estimation (Appendix 8) to detect the 

location of 17 key points from the human body, located through cartesian coordinates 

(Papandreou et al., 2018). The model calculates the key points by estimating short-range 

and mid-range offsets and heatmaps. The main drawback of this methodology is the 

multiple missing values that it generates. As standard practices for filling missing values, 

such as using the average or filling them with zeros, can distort the skeleton's position and 

therefore learn unfeasible postures, the only option found in previous research is Kalman 

Smoothing (Burke & Lasenby, 2016). In this case, it also was not enough, as it requires 

more than one frame with all key points being detected. Over 11% of the sample would be 

lost when using this algorithm. The hypothesis behind this drawback is that this method 

only locates the key points in a 2D environment. Therefore, the algorithm cannot detect the 

key points behind one another (a person looking to the side). In consequence, this method 

was discarded. 

Google Blaze Pose 

Google Blaze Pose (Bazarevsky & Grishchenko, 2020) solves one of the issues 

mentioned above: only having 2D coordinates. This algorithm (Appendix 9) is 

computationally expensive, taking over 4 hours to preprocess one of the videos with the 

available computational power. 13,939 videos would take over six years to preprocess. 

Hence, this method was discarded. However, if there is no additional data regarding camera 

positions and the same video is not filmed from different angles, this would be the way to 

go. If this method is used, it is recommended to discard some of the key points, as the detail 

of 33 points is unnecessary (Appendix 10). One should only keep one key point per hand, 

foot, eye and get rid of the mouth. 
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AIST++ 

A previous study aiming to predict movement using the same dataset (AIST DB) 

developed a new way of preprocessing the raw video data. Researchers converted the 

videos into 3D data. The researchers first recovered the "camera calibration parameters and 

the 3D human motion in terms of SMPL parameters (Skinned Multi-Person Linear 

Model)", containing the 17 COCO notation key points and the 24 SMPL parameters (Li et 

al., 2021). SMPL can represent different body types on top of the skeleton (Loper et al., 

2015). In the original AIST DB, the videos were recorded from different angles, which 

allowed the researchers to estimate the 3D coordinates, resulting in 1,408 different files 

(one per unique video) with their corresponding coordinates, estimated at 60 frames per 

second. This dataset does contain missing values, and researchers do not specify how these 

were filled. The only option found for filling out the missing values was using Kalman 

Smoothing (Burke & Lasenby, 2016). In contrast to using Pose Estimation, there were 

enough complete samples to infer the missing values. Due to the cleanliness achieved, this 

dataset will be used for the entirety of this paper. 

Path Definition: Classification or Regression? 

After having the complete data table, there are two possible paths, meaning the full 

table of human key point coordinates. The first path was to treat the problem as a 

classification problem, which will require clustering poses and labeling them accordingly. 

The second option is to treat the problem as a regression problem, specifically as an 

autoregressive time series. The model will therefore consider the previous pose to predict 

the following. If this were not treated so, the frames would have no cohesion, and they 

would be separate images that are unfeasible to be reproduced by a human. The extraneous 

variables of the audio features should also be added. 
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Labeling for Classification 

There are two options proposed to label the data: movement clustering and 

rule-based labeling. For both of these options, movement is labeled, not poses. Therefore, 

the frames need to be differentiated. Researchers have previously used a 5-frame 

differencing to cluster large movement changes, such as walking or jumping (Onuma et al., 

2008). In this case, details are essential, as slight movements, such as lifting the arm one 

centimeter, are relevant. Therefore, it was established that the differencing should be lower 

to achieve greater detail. As a result, a differencing of each two frames was used as a 

starting point. 

Clustering 

This section focuses on the movements and not the frequencies in which they move, 

so the 21 unique choreographies were selected, with 51 variables each (17 joints times three 

dimensions). This way, the computational power required was also reduced. Despite 

reducing the dimensionality, the number of remaining variables was too high for a simple 

clustering algorithm. Hence more dimensionality reduction techniques were necessary. As 

proven in previous studies, using PCA to reduce dimensionality had no apparent adverse 

effect on the clustering (Onuma et al., 2008). It is recommended to explain 90% of the 

variance to get optimal performance. Twenty-six principal components were selected to get 

90% of explained variance. However, after creating the clusters and comparing the 

movement in the different clusters, the clusters did not show any patterns. The hypothesis 

behind this is that there is too much diversity of movements and not enough similarities 

between the videos for the clustering to be optimal, also not allowing the labeling of the 

clusters, introducing unexplainable bias. Therefore, this method was discarded. 
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Rule-based 

The alternative method consisted in creating rules, which automatically classified 

the movement. No previous research was found, so it would consist of creating different 

rules and creating the labels manually. The movement dealt with in this paper, namely 

dancing, is very complex, so it would be challenging to cover all options. Additionally, the 

labels would be pre-made to the researcher's mind, introducing much bias and leaving no 

room for new innovative movements. Therefore, this method, as well as the classification 

method in general, was discarded. 

Regression 

To treat the project as a regression problem, the goal is to predict the 3D coordinates 

of each key point. For this, several issues need to be solved: 

1.​ Length Standardization 

2.​ Value range decrease 

Length Standardization 

For the model’s architecture to be simpler and for this preprocessing framework to 

work for all models, the sequence length of all the videos in the sample should be 

standardized. This length standardization consists in cutting them into the number of frames 

of the shortest video. In this case, the shortest video has 426 frames. Therefore, longer 

videos are cut into groups of 426 frames. The series length can be established through a 

rolling window of length 426, shifting the windows each x frames (referred to as shift), 

defined by the programmer. If the shift is equal to the window length, the windows will not 

overlap, and the sample size in terms of the total number of frames will remain the same. 

However, if the shift is smaller than the window length, the windows will overlap and 
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upsample the dataset by duplicating some frames. In this case, a shift of one was 

established, meaning the dataset was upsampled as much as possible. 

No Further Preprocessing - Autoencoders 

After having all sequence lengths standardized, the first method uses the raw 

coordinates as an input. This consists in using the x,y, and z coordinates as they are. To 

make a quick test and see whether this is effective, autoencoders were run to see if they 

could decrease dimensionality and use that as input for an RNN. The best autoencoder had 

a dense layer with relu activation and a dropout layer of 0.3 for both the encoder and 

decoder (Appendix 11). Nevertheless, the errors were very high for both the training and 

the validation set (Appendix 12).  As there is little overfitting, it is not about the sample size 

but about the model complexity (it being too low) or the preprocessing of the data. The 

model complexity was increased by increasing the number of layers. However, the errors 

only increased. Therefore, the problem must lay in the preprocessing of the data. The 

hypothesis for these huge errors is that the coordinate values cover a vast range several 

orders of magnitude larger compared to the cases in traditional machine learning, making it 

difficult for the model to predict, giving huge errors. To solve this issue, two solutions were 

tested: 

1.​ Scikit-learn Normalization 

2.​ Intra- and Inter-Movement Normalization 

Scikit-learn Normalization 

A common normalization technique used in many machine learning problems is 

scikit-learn normalization (Pedregosa et al., 2011). This method can also be 

back-transformed, meaning that the values returned by the model can then be transformed 

back into the coordinates with the exact dimensions as they had initially. This normalizer 
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converts all observations to the unit norm, ranging between -1 and 1. The autoencoders 

tested this method to see how well a neural network can deal with this data. The errors were 

greater when back-transforming; consequently, this method was discarded. 

Intra- and Inter-Movement Normalization 

As standard normalization techniques were unsuccessful, another more customized 

technique was tested. Previous research had proposed a standardization method consisting 

of creating quaternions of relative positions of the key points (Martinez et al., 2017). This 

technique consists of dissecting movement into two different types. The first one is the intra 

movement, similar to the relative movement used in physics, which describes the 

movement of one object A related to the position of object B. In this case, it describes the 

position of all joints related to one joint, referred to as the reference joint. The second is the 

inter-movement, similar to the absolute movement in physics, which describes the 

movement of a body from one space into another. In this case, it is the movement of the 

reference joint concerning the space in which it is. Usually, the hip is used as a reference 

joint. The data at hand contains both the left and right hip, so it was decided to use the left 

hip. 

For the intra-movement normalization (Appendix 13), the sine, cosine, and r, the 

hypotenuse from the reference joint to the key joint, must be calculated. Although 

coordinate z is related to the inter-movement, it will be kept so it can also be predicted. 

However, one can also drop it and infer it with the inter-movement predictions. Moreover, 

all data concerning our reference joint, in this case, the left hip, will be ignored. This 

reduces the range covered by the original coordinates and is very easy to back transform. 

Just the left hip coordinates will be included for the inter-movement normalization. 

Although the value range is not reduced here, the dimensionality problem of the data set is 
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removed, as now the model would only be dealing with three variables. If one does not 

want to create an extra model for this point, trajectories can be preestablished, making the 

human move in a predefined way, for example, in a circle. 

Input Data Structure 

There are two possible data structures for the input data, only considering the video, 

individual input, or array input.  

The array input option has one column per key point and an array of length four in 

each observation (sin, cos, r, z). When using PyTorch, this can be inputted directly as a list 

or as a tensor. The problem is that both of these formats require very complex model 

architectures to read the input and define the target correctly. In the case of using PyTorch, 

as explained below (PyTorch TimeSeriesDataSet section), researchers could not adapt the 

function to capture the input and target correctly. Although this reduces the dimensionality 

in terms of the number of variables, using it as input overcomplicates the model's 

architecture. 

Additionally, all saving formats do not support saving arrays into a data frame, and 

pandas recognizes the arrays differently depending on the saving format. Hence, this 

method is discarded. However, if someone is willing to continue this processing line, saving 

the data as pickle is recommended. 

The second option divides each array into separate columns, having four columns 

per key joint. Using this technique, there are 68 numeric columns, which can be easily input 

into the model without overcomplicating the architecture. The only drawback is the 

dimensions, but one can build a neural network to cope with it. For this, using PyTorch is 

recommended, and it will be explained below how to structure the input accordingly. 

Therefore, this is the recommended method. 
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Audio - Video Integration 

For the integration of the audio features, the audios were cut according to the frames 

per second. As mentioned above, AIST++ was preprocessed at a rate of 60FPS, meaning 

each frame represents approximately 16.67 milliseconds of the video (Appendix 14). 

Therefore, all audios were cut into  16.67 milliseconds long frames, and the corresponding 

features were extracted and matched with their corresponding frames.  

PyTorch TimeSeriesDataSet 

Once the dataset is clean and shows the intra-movement of the humans and the 

corresponding audio features, the next step consists in relating this data to time and 

structuring the input accordingly. This paper will focus on the intra-movement, as it is the 

most complex, dealing with a higher number of joints and variables. Furthermore, the 

intra-movement is more relevant in the choreographic world, as it defines the choreography 

itself, leaving room for choreographers to define the transitions and create the show through 

collaboration with machines. 

For this matter, PyTorch will be used. Pytorch is one of the most used libraries, 

which “provides an imperative and Pythonic programming style that supports code as a 

model, makes debugging easy and is consistent with other popular scientific computing 

libraries, while remaining efficient and supporting hardware accelerators such as GPUs” 

(Paszke et al., 2019). Any training of the data at hand is computationally expensive, as 

video data is one of the heaviest types of data available. Therefore, having efficient model 

training is crucial. Another great advantage of PyTorch is that it is open-sourced. Using it is 

a great way to contribute to the community, showing different uses and making it available 

to the community for improvement. 
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On top of this library, there is an already built module for temporal data, named 

TimeSeriesDataSet, which eases the train-test-split and structures it so that any PyTorch 

model can directly use it (Beitner, 2020).  

 

Figure 2: Example Columns for TimeSeriesDataSet 

When building it (Appendix 15), one must define the training set with the corresponding 

ordered index (no gaps), enter the column's name identifying the time, the target variables, 

the group ids identifying the different time series one has in the sample, and the 

time-varying variables divided into categorical and numerical variables. Furthermore, one 

must indicate how many time steps one wants to use to predict and how many one wants to 

predict so that the splits can be done accordingly. Lastly, one must choose the PyTorch 

normalizer for the target. 

​ In this case, dealing with multiple targets,  it is compulsory to use the 

MultiNormalizer, inside which one can then choose which normalizer to use for each target 

separately. This normalizer is a wrapper in which all normalizers listed are executed to their 

corresponding target (related by position). There are mainly two normalizers to use. The 

EncoderNormalizer is fit in each encoder sequence separately, and the GroupNormalizer is 

fit by groups, established by the coder as an argument of the function. After this, the data is 

loaded into the data loader, ready to train. There is a bug in the original code one 
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downloads with the library. This error is given because the MultiNormalizer is not fitted 

yet. However, one cannot fit it before putting it into this function because one is also 

defining the target here. This error was debugged, and the error lay in the fit function, 

where one must set the “self_.fitted” attribute to true (2021).  

Modeling 

Once the data was clean and preprocessed as described above using the 

inter-movement technique, the QuaterNet architecture was used (Pavllo et al., 2018). This 

architecture was used to predict other movements, such as walking. Additionally, it was 

previously trained with the same type of preprocessing described above, switching from 

postures to the inter- and intra-movement method. Therefore, the first thing that is defined 

is a benchmark skeleton, which makes sure that the predictions do not go out of range. The 

proposed architecture is composed of a two-layer gated recurrent unit network (GRU), 

followed by one linear layer, which was demonstrated in this paper as well as in “ On 

human motion prediction using recurrent neural networks” (Martinez et al., 2017) that 

performed better.  Overall the network inputs the rotations and is trained to predict the 

future rotations of the skeleton across x timesteps, given n previous frames, and learns 

using the Adam Optimizer, as used in previous research (Martinez et al., 2017). In this case, 

the model was evaluated visually, as one of the goals is to create new movements, not 

precisely the ones given by the videos with which it trained. With this, it is meant that the 

model is supposed to generate choreographies, not the same ones as in the training set. 

Therefore the only necessary measure is that movements are feasible by humans, not the 

sequence itself. 
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GRU Layers 

GRU is a layer for recurrent neural networks (RNN) used for time-dependent tasks, 

such as the one at hand. The main benefit of RNNs is that they have a memory, which 

captures past observations and uses them for future predictions. This is relevant for the task 

at hand, as dancing is time-dependent (related to the audio beat). The previous movement is 

relevant for predicting the next, as the sequence needs to flow and be feasible by humans. 

One of the most common types of RNN layers is the Long Short-Term Memory 

layer. However, this one is much more complex than the GRU layers, as one needs to 

calculate more gates (input, forget, and output), which is computationally more expensive 

and overall more complex. On the contrary, GRUs only have two gates, update and reset, 

lowering the number of parameters to estimate and, therefore, computational power  (Dey 

& Salem, 2017).  

Results 

This paper aims to establish the first approach for a standardized framework 

(Appendix 16) to have the optimal preprocessing of video data combined with the audio 

data. Nevertheless, this preprocessing framework can be used for any application of video 

data combined with other extraneous features. For instance, the health industry can use it to 

detect the rehabilitation of an injury by seeing how a person moves a particular body part in 

day to day activities, combined with the personal health information of a patient, such as 

weight, height, previous diseases, etc. 

Speaking of choreographies, since they are usually created through the 

choreographer’s creativity others can see  them as a random movement. Therefore they can 

be considered as one of the most complex types of movement. The random movement has 

mainly three conditions it must fulfill: 
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1.​ It must go with the music, meaning it must go with the beat, melody, and 

overall music flow. 

2.​ It must be feasible, meaning it needs to be able to join one movement with 

the next fluently. 

3.​ The output must be structured to make it easy for dancers to learn the 

choreography directly from the output. 

In the proposed framework, the main challenges of this kind of data are solved 

(Appendix 17): coordinate detection through the estimation of the 3D parameter with 

different video angles or using Google Blaze Pose, missing values which are estimated 

through low Kalman smoothing, value range, which is reduced through the inter-and 

intra-movement transformation, combination with extra features through the extraction of 

features at the same frame rate, and model input preparation done through python 

TimeSeriesDataSet. 

 There are currently two possible methods regarding coordinate detection, either 

calculating the 3D key points or using a model such as Google Blaze Pose. The first method 

calculates the key points by having the same video filmed from different angles, so all key 

points are detected. In this case, the AIST++ database was used, which was constructed 

using that method and did not affect the body's structure (Appendix 18). Combining this 

with visualizing brings the advantage that the key points are mirrored. While this could be 

confusing for a viewer,  it is much simpler for a dancer to learn choreography, as he/she 

only needs to replicate movements and not mirror them again, just as in the dance studio. 

The alternative method is using an algorithm, such as BlazePose, which detects movements  

automatically. Right now this algorithm is at research level, meaning it is not yet usable by 

everyone as it depends on the resources one has available. Furthermore, it has not been 
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studied how it works at the deployment level, as the fine tuning and deployment phase is 

out of this project's scope. 

After having the coordinates, the missing values must be filled. In this case, 

standard practices such as using averages, medians, or zeros are not possible, as it would 

distort the position of the human. Using Kalman Smoothing is proposed. This method 

requires all key points to be present in several frames, but it does not distort the distribution 

of the key points, adding close to no bias to our data. 

Value range is one of the greatest challenges included in this project. This study has 

proven that standard normalization techniques used in other cases are not successful, as it 

worsens the performance of models. Therefore the recommendation is to use the inter- and 

intra- movement technique (Appendix 13). 

In the intra-movement, one should select a reference joint and calculate the distance 

to the other joints, the cosine, and the sine. For the intra-movement, one should also keep 

the z position, so all three dimensions are still considered. For the inter-movement, one 

should only predict the position of the reference joint considering the space in which it 

moves with translation and rotation across the space. This transformation does not affect 

the body position, as when back-transforming and visualizing, one gets the same position 

(Appendix 18). 

Once all transformed coordinates are collected, one should combine the extra 

features. In this case we added the extra features of the audio considering time. The audio 

must be cut at the same frame rate as the frames. For example, when working with a 60FPS 

dataset (as is the case above), the audio should be cut in 16.67 milliseconds by 16.67 

milliseconds windows, and the features should be extracted from those cuts directly 

(Appendix 14). Once this is done, it should be joined with the transformed coordinate data. 
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The frame rate is a hyperparameter one should consider altering when modeling. In this 

case, it was decided to keep it at 60 frames per second because that is how the AIST++ 

database did it previously and, overall, the standard used in the community. 

After having all the necessary features collected, one should standardize the series 

length. One should see how long the shortest time series is and cut all series to that same 

length. If the researcher wants to upsample the dataset, these cuts could be overlapping. In 

our case, the shortest series was 426 frames long, and it was decided to use overlapping 

windows. 

The last step before modeling is structuring the data  so the model will accept it as 

input. For this type of data, using PyTorch is recommended. The TimeSeriesDataSet 

function should be used. To do the train-test-split as wished, the TimeSeriesDataSet was 

used. As a result, the MultiNormalizer has been debugged and fixed. Furthermore, to ease 

the input definition, it is recommended to have each feature in a separate column instead of 

entering each key point as an array. 

The Move2Data preprocessing framework has been executed without any issue 

and validated in a model already developed and previously trained by Facebook (Pablo et 

al., 2018), used to predict human movement. The model ran and trained without any issue 

after doing the necessary debugging to adapt it to our newly standardized data format. 

Lastly, the model has also been validated by Aitaca (Appendix 19), a startup that provides 

an AI-based 3D modeling engine that “transforms a full-body length video into an accurate 

3D body model with comprehensive measurements” (Aitaca, 2022). Furthermore, the 

human body representation is mirrored adapting to the needs of the entertainment and 

media industry regarding dancing. It also considers the main parts of the human body used 

in this industry.  
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All of the above, fulfills the aim of this project, to provide the community with a 

standardized way of preprocessing data helping to build models that will generalize better 

once they are trained.  

After modeling, it is just a matter of back-transforming the output and visualizing 

the key points, so the choreographers can see the produced choreography and use it for their 

next show. The original coordinates are estimated with the intra-movement transformation 

variables (Appendix 20). After, all points can be visualized via matplotlib, and then a video 

can be created through the OpenCV library. 

Discussion 

This paper aimed to establish a standardized framework for preprocessing human 

video data with audio. As shown in the literature review, there is no standardized 

processing technique. Each paper studies and uses one particular type of processing or uses 

the data as-is without delivering optimal results. Therefore, this paper took a step further 

into human movement prediction concerning extraneous variables, particularly music.  

As analyzed above, the main issues when dealing with this kind of data are 

addressed in the end-to-end framework proposed in this paper (Appendix 16). This 

framework can also allow the open-source community to train and deploy new models, 

leading to better models for choreography generation as in other cases, such as natural 

language processing (NLP) models developed by the community and published on open 

source platforms.  

This framework is one of a kind, as no other preprocessing framework for this 

subject has been found. It was developed out of a necessity when trying to model 

choreographic movement. Therefore, all previously used techniques have been tested and 

combined most optimally. This framework has been tried out on a random sample of 10% 
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of the dataset and it has always mirrored the human’s position visually correct. This shows 

that no bias is being added and the values are simplified. 

This advancement could also mean a disruption of the audiovisual and dance 

industry, as it would be able to generate choreographies at a much faster rate and even 

create human-computer collaborations, bringing new styles of dance and movement. 

Additionally, it could also be helpful with other extraneous features, such as body measures 

and health conditions, for the health industry, diagnosing diseases by seeing how people 

walk or perform day-to-day tasks after having an injury. This way their improvement and 

healing could be measured online. 

Another interesting application could be in mass control for airports, public 

transport, or any space in general. This way, a supermarket could decide which kind of 

music to put as ambiance, so their customers shop quicker or slower. Further applications 

could also include the digital fitting room of clothing shops, showing the product's fit 

statically and how the fabric will move as one moves. Lastly, a huge application could be 

for the metaverse, a“ post-reality universe, a perpetual and persistent multiuser environment 

merging physical reality with digital virtuality” (Azar & Barretta, 2022). In this virtual 

world, for it to be as authentic as possible, the human avatars will need to move as 

realistically as possible, and that is where this processing and the potential models built 

with them will potentially come into play. Apart from these, there are  many other future 

applications we cannot even imagine today. 

This preprocessing framework is a good starting point for further development. This 

first version must be tested by more models and applications, potentially customizing and 

optimizing some of the steps. However, it has the potential to be among the optimal ones. 

One must also consider that dance has  a lot of  creativity involved, that the model needs to 
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learn how to capture and predict. Moreover, by using this preprocessing, a model will be 

able to learn possible poses, and with a big enough dataset and suited architecture, it will be 

able to predict accordingly. 

This paper discusses the preprocessing of such data in-depth, leaving future 

researchers and the whole community the opportunity to use it, create the models, and make 

the necessary changes for optimal prediction. It is recommended to create an unsupervised 

model, as the aim is not to predict the same choreography, just feasible and proposed poses 

limited by human conditions: fitness, health, disease, therapy, etc. Another potential 

research question could be how to create an error function suited for this problem, creating 

a body function that measures the possibility of human capabilities performing that same 

position and movement. Finally, it would be interesting to conduct further research in the 

3D coordinate detection, training a much more efficient model. Overall, the three relevant 

further research questions could be: 

1.​ How can we predict choreographic movement considering audio? 

2.​ How can we measure human movement generation success? 

3.​ How can we detect 3D coordinates from videos more efficiently? 
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Appendix 

Appendix 1: Camera Positions for Videos 

Displayed, one can find the position of the nine cameras filming simultaneously. 

Except for camera nine, they are five meters away from the dancer (Tsuchida et al., 2018). 

 

Appendix 2:  AISTDB Video Groups 

Below one can find the four different groups in which the videos are divided. All 

videos showing simple moves, with many repetitions and practically no floor work, are 

considered basic dance. Those with more complex and changing moves are considered 

advanced dances. If more than one person is dancing simultaneously, it belongs to group 

dance. Lastly, if the camera is not stable and changes its position, it belongs to the moving 

camera group. Below, there is only an example for the break genre; however, the 

distribution is similar for the rest of the genres listed at the right of the image (Tsuchida et 

al., 2018). 
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Appendix 3: AISTDB Situations  

There are three extra situations included in the AISTDB. Only 50 videos belong to 

one of these situations. The first one is showcase; these videos are group performances that 

simulate real dancing shows. The second one is cypher. In the dance industry, a cypher is 

when all dancers stand in a circle and battle when going in the center by freestyling. Lastly, 

the battle is when two people are dancing against each other, also freestyling (Tsuchida et 

al., 2018). 

 

Appendix 4: VGG-19 Architecture 

Here one can see the VGG-10 architecture, composed of five-layer pairs of CNNs 

and max pool layers, followed by three fully-connected softmax layers (Zheng et al., 2018). 
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Appendix 5: Audio Features Definition 

●​ Spectral centroid: weighted mean of the frequencies present in the sound.       

●​ Spectral roll-off: frequency below which a specified percentage of the total 

spectral energy. 

●​ Zero crossing rate: the rate at which the signal changes from positive to 

negative or back; higher values for highly percussive sounds like those in 

metal and rock.        

●​ Spectral bandwidth: variance from spectral centroid.     

●​ Spectral contrast: relative spectral characteristics.        

●​ Spectral flatness: width, uniformity, and noisiness of the power spectrum. 

●​ RMS: average loudness of an audio track. 

●​ MFCC: small set of features (usually about 10–20) which concisely describe 

the overall shape of a spectral envelope.   

Appendix 6: MANOVA 

This MANOVA was run to determine if the relationship between audio features was 

related to the cluster to which they were assigned.  By looking at the p-values, it is 

38 
 



What if we are able to predict movement? 

concluded that the relationship is significant. Therefore, it can also be concluded that 

VGG-19 detects the features used by previous studies. 

 

Appendix 7: Audio Clusters Average Difference 

Below one can see how the seven different clusters behave regarding the different 

variables used in a previous paper. The variables that most divided the audios used in this 

project are the three shown below: spectral centroid, spectral roll-off, and zero-crossing 

rate. The numbers inside the boxes indicate the cluster number, and each time they belong 

to the box above, it means that they are above average and vice versa. As three clusters 

cannot be divided in terms of these variables, it is confirmed that VGG-19 is extracting 

more features than those used in previous papers. 
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Appendix 8: Pose Estimation Algorithm 

This paper focuses on the pose estimation module from the image below, explaining 

how the algorithm performs the pose estimation and outputs the key points (Papandreou et 

al., 2018).  
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Appendix 9: Google Blaze Pose Pipeline 

The pipeline of Blaze Pose works as follows. For the first frame the algorithm 

detects the object of interest and predicts all 33 key points. The remaining frames estimate 

the key points from the heatmaps and their corresponding offsets (Bazarevsky & 

Grishchenko, 2020).  

​  

 

Appendix 10: Google Blaze Pose Key Points 

Google Blaze Pose expands the COCO standard (17 key points) to 32 key points. 

Depending on the task one performs, one may be able to discard some, such as the inner 

and outer eye corners, leaving only the eyes themselves. 
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Appendix 11: Autoencoder Architecture 

The autoencoder was used to see if it would be possible to reduce the 

dimensionality of the dataset by encoding and decoding and using the raw dataset with the 

original 3D coordinates. 

 

Appendix 12: Raw Autoencoders Performance 

Below one can see the performance of the autoencoders, measured as mean squared 

error. Looking at the y-axis, it is concluded that the errors are extremely high. Furthermore, 

the overfitting decreases. However, the model is still performing poorly. 
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Appendix 13: Intra Movement Normalization 

 

Appendix 14: Audio Window Calculation 

Our video data is processed at 60 frames per second, meaning the dataset has one 

frame each  seconds. One second is equivalent to 1,000 milliseconds, meaning  1
60

1
60

seconds is equivalent to 16.67 milliseconds. Therefore the audio window is of 16.67 

milliseconds. 

Appendix 15: TimeSeriesDataSet Parameters 

Below one can find the parameters used for the TimeSeriesDataSet. For the 

target_normalizer one must input as many normalizers as number of targets one is working 

with. 

Parameter Used Value 

data d[lambda x: x.index <= d["time"].max() - 
max_prediction_length] 

time_idx “time” 

target list of all targets 

group_ids “File_group” 
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time_varying_unknown_reals list of all lagged values 

min_encoder_length 0  

max_encoder_length 120 

min_prediction_length 1 

max_prediction_length 60 

target_normalizer MultiNormalizer([TorchNormalizer(), …]) 

 

Appendix 16: Move2Data Preprocessing Framework 

This is the end-to-end preprocessing framework proposed by this study. 
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Appendix 17: Move2Data Preprocessing Framework and Challenges Solved 

Complementing the preprocessing framework, the challenges solved in each step are 

color-coded. 

 

Appendix 18: Impact of Preprocessing Steps on Body 

As you can see, the points are mirrored; this will allow dancers to learn the 

choreographies easier, replicating the same situation as in the dance studio. Apart from that, 

there are no changes in the dancer’s pose from one step to the other.
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Appendix 19: Aitaca Validation 

 

 

Appendix 20: Intra-movement Back Transformation 
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Appendix 21: Move2Data Github Repository 

​ On this repository you can find the defined functions to go through the entire 

framework. Additionally, there is a tutorial on how to use the functions. 

https://github.com/roglantero/Move2Data 
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