
Proposal for a "What-Goes-Where"
Provider

Introduction
This proposal outlines the creation of a new, small Bazel module (or addition to an existing
“base” module, like bazel_lib) designed to unify the definition of file placement within
archives, container image layers, and other deployment targets. This "what-goes-where"
provider aims to decouple the description of file contents (known by language rulesets
like rules_python, rules_js, or bazel-lib’s copy_to_directory) from the specific
implementation details of packaging or deployment rules (e.g., rules_pkg, tar.bzl,
rules_img). This approach seeks to avoid issues similar to those encountered with
rules_docker by providing a clear and extensible mechanism for specifying file
locations and metadata in each language ruleset (and not in a single place shared by all
languages).

The information we want to capture includes:

●​ Which File structs should end up in a deliverable (and which can be safely
omitted)

○​ This is important when bundling an executable file, where the DefaultInfo
of the executable may reference a different subset of File than what we
would like to bundle in a deliverable.

●​ How the deliverable can be split up into smaller components (like container image
layers)

○​ Language runtime, standard library, and similar foundational components
○​ Third-party runtime dependencies (shared libraries, interpreted code, …)
○​ Application code or (same-party) runtime dependencies

●​ How the files should be laid out in the deliverable
○​ Could reuse runfiles layout of an executable.
○​ Sometimes, a different layout could be necessary.

●​ Additional filesystem nodes that aren’t well expressed by File
○​ Empty directories that should be created in the deliverable
○​ Symlinks that should be created in the deliverable

■​ This is different from File.is_symlink: we care about the
representation of symlinks as a pair of strings in the deliverable.

●​ Other metadata, including file attributes
○​ mtime of files and other timestamps

○​ Ownership information
○​ Extended attributes (xattr)
○​ Filesystem flags (rwx + more)
○​ And potentially extra metadata that is specific to the kind of deliverable, like

custom PAX headers in a tar file. This means we want to allow for custom
metadata tags, along with a few well-known ones.

Problem Statement
Currently, various Bazel rulesets for packaging and deployment handle the mapping of
source files to destination paths independently. This leads to redundant implementations
and tight coupling between language rulesets and specific packaging solutions. A
centralized, standardized provider for "what-goes-where" information is needed to:

●​ Enable language rulesets to describe archive or container image contents without
depending on specific archive implementations.

●​ Decouple the "what-goes-where" description (known to language rulesets) from
container image or archive rules, reducing complexity and increasing flexibility.

●​ Facilitate efficient deployment of files to object storage and other targets by
providing a unified input format.The current approach often involves language
rulesets independently creating entire tar files, leading to inefficiencies. For
examples, see:

●​ rules_js: js_image_layer
●​ rules_py: py_image_layer

High-level interaction

A high-level interaction would involve a language ruleset (e.g., rules_python) producing
a what_goes_where provider. A packaging rule (e.g., rules_pkg's pkg_tar) would then
consume this provider. For instance, a py_binary target could expose this provider, and
a pkg_tar rule could use it to specify the contents and layout of the generated tar archive
without the py_binary rule needing to know the specifics of tar file creation. This
effectively separates the concern of "what files are needed" from "how those files are
packaged."

Here’s a rough example illustrating how a py_binary rule implementation could return the
new FSManifestInfo provider (working title) and how an image_layer rule from
rules_img might consume it in a BUILD.bazel file.

https://github.com/aspect-build/rules
https://github.com/aspect-build/rules_js/blob/main/js/private/js_image_layer.bzl
https://github.com/aspect-build/rules
https://github.com/aspect-build/rules_py/blob/main/py/private/py_image_layer.bzl

Python

Python

In a hypothetical rules_python implementation (e.g., py_binary.bzl)

... (other rule implementation details) ...

def _py_binary_impl(ctx):
 # ... (existing py_binary logic to determine files and their metadata) ...
 return [
 # DefaultInfo ...
 # ... other providers ...
 FSManifestInfo(....),
]

py_binary = rule(
 implementation = _py_binary_impl,
 # ... (other attributes) ...
 provides = [FSManifestInfo],
)

BUILD.bazel

load("@rules_python//python:defs.bzl", "py_binary")
load("@rules_img//img:defs.bzl", "image_layer")

A sample Python binary
py_binary(
 name = "my_app",
 src = "main.py",
 # ...
)

An image layer consuming the "what-goes-where" information from my_app
image_layer(
 name = "app_layer",
 base = "@ubuntu",
 # The new attribute to consume the "what-goes-where" provider
 bundles = [":my_app]",
 # Other image_layer specific attributes
 user = "appuser",
 working_dir = "/app",
)

A ficticious rule that doesn't exist yet, but that can make use of the same
"what-goes-where" information
deploy_to_s3(
 name = "deploy_s3",
 bucket = "contorso_production",
 bundles = [":my_app"],
)

Contending API Approaches
We propose two primary API approaches for the "what-goes-where" provider:

1. mtree Format
The first approach leverages the mtree format, a well-defined standard for describing file
hierarchies and their attributes. The provider should allow rules to produce multiple mtree
files that can be used to produce separate filesystem layouts.

Advantages of mtree
●​ Well-defined format: mtree is a recognized standard understood by existing tools,

offering clear definitions of file placement and support for metadata like
permissions, owner, and flags.

●​ Action-based introspection: Being the result of an action, an mtree file producer
can inspect file contents and make intelligent decisions not possible from Starlark,
such as examining individual files within a TreeArtifact.

Disadvantages of mtree
●​ Opaque to analysis phase: An mtree file is produced by an action, meaning it can

only be read by another action, not directly by a Starlark rule implementation
during the analysis phase.

●​ Path materialization: mtree requires inputs to be referred to by their paths written
to the mtree file. This could pose challenges for path mapping scenarios where
input file paths might differ in various contexts. This is unlikely to be a concern in
reality, since anything consuming the mtree file is unlikely to make use of
pathmapping.

●​ Limited metadata support: While mtree handles common file metadata, it may not
support extended attributes. For example, go-mtree's format (refer to

https://github.com/vbatts/go-mtree?tab=readme-ov-file#format) required
non-standard extensions to handle xattrs. How would we convey extra metadata
not supported by the BSD standard and most tools?

2. Starlark Provider with Dictionary Mapping

You can find a work-in-progress implementation of this approach here:

●​ malt3/bazel-what-goes-where-experiment: Overview containing an ecosystem
of modules (with patches to existing modules) and examples

●​ malt3/runfilesgroupinfo.bzl: Provider for splitting the runfiles of a binary into
smaller groups

●​ malt3/fsmanifestinfo.bzl: Provider for specifying placement and metadata of
individual File objects

The second approach proposes two new Starlark providers:

●​ RunfilesGroupInfo
●​ FSManifestInfo

Those providers solve the following problems:

RunfilesGroupInfo Provider
RunfilesGroupInfo is essentially the same as OutputGroupInfo, but with special
semantics. If RunfilesGroupInfo is present next to DefaultInfo for a target, then the
different groups in RunfilesGroupInfo can be used instead of the default runfiles (in
DefaultInfo.default_runfiles). It is assumed that merging all the depsets contained
in the runfiles group gives you the full set of default runfiles back, so this provider can be
used to subdivide the runfiles into categories.
The following well-known groups are defined:

●​ SAME_PARTY_RUNFILES: Runfiles from the same package needed at runtime. This
is typically the main binary and any data files it needs. This is also considered the
"default" category if no other, more specific category applies.

●​ OTHER_PARTY_RUNFILES: Runfiles from third-party dependencies needed at
runtime. These are typically shared libraries, interpreted code, or other resources
that are not part of the same package as the target. This can be considered to be
the default category for files provided by external repositories if no other, more
specific category applies.

●​ FOUNDATIONAL_RUNFILES: Runfiles that are foundational to the application, e.g.,
interpreter or standard libraries. These can typically be shared across multiple
applications. Sometimes they can be substituted by the runtime environment.

●​ DEBUG_RUNFILES: Runfiles needed for debugging the application. These are
typically not needed for normal operation but can be useful for diagnosing issues.

https://github.com/vbatts/go-mtree?tab=readme-ov-file#format
https://github.com/malt3/bazel-what-goes-where-experiment
https://github.com/malt3/runfilesgroupinfo.bzl
https://github.com/malt3/fsmanifestinfo.bzl

Python

This can include external ELF files, DWARF files, source maps, or other external
debug symbols.

●​ DOCUMENTATION_RUNFILES: Runfiles needed for documentation. The application
SHOULD still function without these files. Features that rely on these files MAY be
disabled if they are not present, including help commands or man pages.

Consider the following usage example:

foo_binary.bzl:

load("@runfilesgroupinfo.bzl", "RunfilesGroupInfo", "SAME_PARTY_RUNFILES",
"OTHER_PARTY_RUNFILES", "FOUNDATIONAL_RUNFILES", "DEBUG_RUNFILES")

def _foo_binary_impl(ctx):
 # ... skipping over the rest of the logic

 # The runfiles contain all groups merged into one
 runfiles = ctx.runfiles(
 files = [main_file, interpreter_executable],
 transitive_files = [
 same_party_transitive,
 third_party_transitive,
 standard_library_data,
 language_runtime_data,
 sourcemaps,
 external_dwarf_symbols,
],
)

 # RunfilesGroupInfo keeps different groups separated
 runfiles_group_info = RunfilesGroupInfo(
 SAME_PARTY_RUNFILES = depset([main_file], transitive =
[same_party_transitive]),
 OTHER_PARTY_RUNFILES = depset(transitive = [third_party_transitive]),
 FOUNDATIONAL_RUNFILES = depset([interpreter_executable], transitive =
[standard_library_data, language_runtime_data]),
 DEBUG_RUNFILES = depset(transitive = [sourcemaps,
external_dwarf_symbols]),
)

 # We return DefaultInfo and RunfilesGroupInfo.
 # This allows for the following use-cases:

Python

 # - consumers that cannot interpret RunfilesGroupInfo can simply ignore it
and just use DefaultInfo (and the runfiles inside of it)
 # - consumers that are aware of RunfilesGroupInfo can make informed
decisions about splitting and filtering the different groups.
 #
 # Consumers that are aware of RunfilesGroupInfo can treat it as an optional
provider. If it is not present, they can still fall back to the full set of
runfiles from DefaultInfo.
 return [
 DefaultInfo(..., runfiles = runfiles),
 runfiles_group_info,
]

foo_binary = rule(
 implementation = _foo_binary_impl,
 # ... other arguments omitted
)

custom_packaging_ruleset.bzl:

load("@runfilesgroupinfo.bzl", "RunfilesGroupInfo", "SAME_PARTY_RUNFILES",
"OTHER_PARTY_RUNFILES", "FOUNDATIONAL_RUNFILES", "DEBUG_RUNFILES")

def _custom_package_impl(ctx):
 default_info = ctx.attr.binary[DefaultInfo]
 if RunfilesGroupInfo in ctx.attr.binary:
 # perform custom logic like splitting the third party deps into a
separate layer
 # ... or maybe omit DEBUG_RUNFILES if compilation mode is not dbg
 runfiles_group_info = ctx.attr.binary[RunfilesGroupInfo]

 # use default_info.files together with some subset of
runfiles_group_info
 return ...

 # if RunfilesGroupInfo is missing, we can still process the full set of
runfiles as a fallback
 # do something with default_info.files and default_info.default_runfiles
 return ...

FSManifestInfo Provider
FSManifestInfo contains a dictionary that maps "path in image" to a Bazel File object
(we could potentially also allow a depset of File or a runfiles object to be used as the
value), along with file metadata (in JSON or another TBD format). This approach is similar
to rules_pkg's PackageFilesInfo.

Take a look at the draft implementation for more information.

Advantages of Starlark Providers
●​ Remote Execution-Friendly Approach to Layer Splitting: Current implementations

for splitting runfiles of binaries into different container image layer make use of
“large” actions that are provided with all runfiles of a binary. The unused files are
then reported via unused_inputs_list. This doesn’t work well with remote
execution, since unused inputs still need to be available to the remote executor.
The remote cache also is not capable of “stripping” unused inputs.
RunfilesGroupInfo provides a memory-efficient alternative that allows for
efficient splitting of runfiles into separate actions, where each action only sees the
runfiles it needs.

●​ Pure and inspectable: Similar to rules_pkg's PackageFilesInfo, this can be
produced by a rule without running an action (it's pure) and can be inspected and
merged by a downstream rule.

●​ Direct file access: This format already contains the actual File structs, eliminating
the need to pass mtree and files separately.

●​ No path materialization: It doesn't materialize the paths of the inputs, which is
beneficial for path mapping scenarios where input file paths might be dynamic.
This benefit is mostly theoretical.

Disadvantages of Starlark Provider
●​ Limited visibility into directories (TreeArtifacts): The provider would consist of

File structs that are mapped to paths in the deliverable with data known during
the analysis phase. At this stage, tree artifacts (the output of
ctx.actions.declare_directory), are just a File with is_directory ==
True. It’s impossible to know what files are in a tree artifact during the analysis
phase.

●​ Metadata handling: If using a Starlark dictionary for path-to-file mapping, we need
to carefully consider how to handle and encode metadata in a clear and
well-understood manner. A possible encoding would be a second dictionary
containing a path-to-metadata mapping, where the metadata uses a JSON

https://github.com/bazelbuild/rules_pkg/blob/cd7e10846f97b5cb9b184c87b4ceaf2f1b4b5d3f/pkg/providers.bzl#L33-L53
https://github.com/malt3/fsmanifestinfo.bzl
https://github.com/bazelbuild/rules_pkg/blob/cd7e10846f97b5cb9b184c87b4ceaf2f1b4b5d3f/pkg/providers.bzl#L33-L53

encoding of the metadata, which requires standardization across Bazel rules to
work effectively.

3. Annotating edges and categorizing files via aspects
A third approach proposes a technique where dependency edges are annotated with
semantic information about the kind of dependency (e.g., the boundary between 1st-party
and 3rd-party dependencies), which could be used by an aspect to split the files up into
multiple components.

This approach is still in a very early draft stage and subject to change.

An edge could be annotated with well-known semantic tags, including at least the
following:

●​ “embeds/runtime dependency” (included in deliverable) vs “Build against/compile
dependency” (excluded from deliverable)

●​ “Same party dependency” (implicit by not being separated by an annotated
boundary) vs. “other party dependency” (separated by an actual annotated
boundary)

○​ Dependencies belonging to the same “zone” could be placed in the same
subdeliverable (e.g., a container image layer), allowing for a separation of
1st-party and 3rd-party dependencies.

●​ Other annotations (including custom ones that may be introduced by the delivery
method)

Conclusion
Both mtree and the Starlark provider with a dictionary mapping offer distinct advantages
and disadvantages. While mtree provides a standardized, action-based approach with
existing tool support, its opacity during the analysis phase and potential limitations with
extended attributes are concerns. The Starlark provider, on the other hand, offers a pure,
inspectable, and flexible approach with direct file access, but requires careful design for
metadata encoding.

Further discussion and detailed API design are needed to determine the most suitable
approach for the "what-goes-where" provider, taking into account extensibility,
performance, and ease of use for various language rulesets and packaging/deployment
scenarios.

	Proposal for a "What-Goes-Where" Provider
	Introduction
	Problem Statement
	High-level interaction
	Contending API Approaches
	1. mtree Format
	Advantages of mtree
	Disadvantages of mtree

	2. Starlark Provider with Dictionary Mapping
	RunfilesGroupInfo Provider
	
	FSManifestInfo Provider
	Advantages of Starlark Providers
	Disadvantages of Starlark Provider

	3. Annotating edges and categorizing files via aspects

	Conclusion

