
Proposal for a "What-Goes-Where" 
Provider 

Introduction 
This proposal outlines the creation of a new, small Bazel module (or addition to an existing 
“base” module, like bazel_lib) designed to unify the definition of file placement within 
archives, container image layers, and other deployment targets. This "what-goes-where" 
provider aims to decouple the description of file contents (known by language rulesets 
like rules_python, rules_js, or bazel-lib’s copy_to_directory) from the specific 
implementation details of packaging or deployment rules (e.g., rules_pkg, tar.bzl, 
rules_img). This approach seeks to avoid issues similar to those encountered with 
rules_docker by providing a clear and extensible mechanism for specifying file 
locations and metadata in each language ruleset (and not in a single place shared by all 
languages). 
 
The information we want to capture includes: 

●​ Which File structs should end up in a deliverable (and which can be safely 
omitted) 

○​ This is important when bundling an executable file, where the DefaultInfo 
of the executable may reference a different subset of File than what we 
would like to bundle in a deliverable. 

●​ How the deliverable can be split up into smaller components (like container image 
layers) 

○​ Language runtime, standard library, and similar foundational components 
○​ Third-party runtime dependencies (shared libraries, interpreted code, …) 
○​ Application code or (same-party) runtime dependencies 

●​ How the files should be laid out in the deliverable 
○​ Could reuse runfiles layout of an executable. 
○​ Sometimes, a different layout could be necessary. 

●​ Additional filesystem nodes that aren’t well expressed by File 
○​ Empty directories that should be created in the deliverable 
○​ Symlinks that should be created in the deliverable 

■​ This is different from File.is_symlink: we care about the 
representation of symlinks as a pair of strings in the deliverable. 

●​ Other metadata, including file attributes 
○​ mtime of files and other timestamps 



○​ Ownership information 
○​ Extended attributes (xattr) 
○​ Filesystem flags (rwx + more) 
○​ And potentially extra metadata that is specific to the kind of deliverable, like 

custom PAX headers in a tar file. This means we want to allow for custom 
metadata tags, along with a few well-known ones. 

Problem Statement 
Currently, various Bazel rulesets for packaging and deployment handle the mapping of 
source files to destination paths independently. This leads to redundant implementations 
and tight coupling between language rulesets and specific packaging solutions. A 
centralized, standardized provider for "what-goes-where" information is needed to: 
 

●​ Enable language rulesets to describe archive or container image contents without 
depending on specific archive implementations. 

●​ Decouple the "what-goes-where" description (known to language rulesets) from 
container image or archive rules, reducing complexity and increasing flexibility. 

●​ Facilitate efficient deployment of files to object storage and other targets by 
providing a unified input format.The current approach often involves language 
rulesets independently creating entire tar files, leading to inefficiencies. For 
examples, see: 

●​ rules_js: js_image_layer 
●​ rules_py: py_image_layer 

High-level interaction 

A high-level interaction would involve a language ruleset (e.g., rules_python) producing 
a what_goes_where provider. A packaging rule (e.g., rules_pkg's pkg_tar) would then 
consume this provider. For instance, a py_binary target could expose this provider, and 
a pkg_tar rule could use it to specify the contents and layout of the generated tar archive 
without the py_binary rule needing to know the specifics of tar file creation. This 
effectively separates the concern of "what files are needed" from "how those files are 
packaged." 
 
Here’s a rough example illustrating how a py_binary rule implementation could return the 
new FSManifestInfo provider (working title) and how an image_layer rule from 
rules_img might consume it in a BUILD.bazel file. 
 

https://github.com/aspect-build/rules
https://github.com/aspect-build/rules_js/blob/main/js/private/js_image_layer.bzl
https://github.com/aspect-build/rules
https://github.com/aspect-build/rules_py/blob/main/py/private/py_image_layer.bzl
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# In a hypothetical rules_python implementation (e.g., py_binary.bzl) 
 
# ... (other rule implementation details) ... 
 
def _py_binary_impl(ctx): 
    # ... (existing py_binary logic to determine files and their metadata) ... 
    return [ 
        # DefaultInfo ... 
        # ... other providers ... 
        FSManifestInfo( .... ), 
    ] 
 
py_binary = rule( 
    implementation = _py_binary_impl, 
    # ... (other attributes) ... 
    provides = [FSManifestInfo], 
) 

 

# BUILD.bazel 
 
load("@rules_python//python:defs.bzl", "py_binary") 
load("@rules_img//img:defs.bzl", "image_layer") 
 
# A sample Python binary 
py_binary( 
    name = "my_app", 
    src = "main.py", 
    # ... 
) 
 
# An image layer consuming the "what-goes-where" information from my_app 
image_layer( 
    name = "app_layer", 
    base = "@ubuntu", 
    # The new attribute to consume the "what-goes-where" provider 
    bundles = [":my_app]",  
    # Other image_layer specific attributes 
    user = "appuser", 
    working_dir = "/app", 
) 
 



# A ficticious rule that doesn't exist yet, but that can make use of the same 
"what-goes-where" information 
deploy_to_s3( 
    name = "deploy_s3", 
    bucket = "contorso_production", 
    bundles = [":my_app"], 
) 

 

Contending API Approaches 
We propose two primary API approaches for the "what-goes-where" provider: 

1. mtree Format 
The first approach leverages the mtree format, a well-defined standard for describing file 
hierarchies and their attributes. The provider should allow rules to produce multiple mtree 
files that can be used to produce separate filesystem layouts. 

Advantages of mtree 
●​ Well-defined format: mtree is a recognized standard understood by existing tools, 

offering clear definitions of file placement and support for metadata like 
permissions, owner, and flags. 

●​ Action-based introspection: Being the result of an action, an mtree file producer 
can inspect file contents and make intelligent decisions not possible from Starlark, 
such as examining individual files within a TreeArtifact. 

Disadvantages of mtree 
●​ Opaque to analysis phase: An mtree file is produced by an action, meaning it can 

only be read by another action, not directly by a Starlark rule implementation 
during the analysis phase. 

●​ Path materialization: mtree requires inputs to be referred to by their paths written 
to the mtree file. This could pose challenges for path mapping scenarios where 
input file paths might differ in various contexts. This is unlikely to be a concern in 
reality, since anything consuming the mtree file is unlikely to make use of 
pathmapping. 

●​ Limited metadata support: While mtree handles common file metadata, it may not 
support extended attributes. For example, go-mtree's format (refer to 



https://github.com/vbatts/go-mtree?tab=readme-ov-file#format) required 
non-standard extensions to handle xattrs. How would we convey extra metadata 
not supported by the BSD standard and most tools? 

2. Starlark Provider with Dictionary Mapping 
 
You can find a work-in-progress implementation of this approach here: 

●​ malt3/bazel-what-goes-where-experiment: Overview containing an ecosystem 
of modules (with patches to existing modules) and examples 

●​ malt3/runfilesgroupinfo.bzl: Provider for splitting the runfiles of a binary into 
smaller groups 

●​ malt3/fsmanifestinfo.bzl: Provider for specifying placement and metadata of 
individual File objects 

 
The second approach proposes two new Starlark providers: 

●​ RunfilesGroupInfo 
●​ FSManifestInfo 

 
Those providers solve the following problems: 

RunfilesGroupInfo Provider 
RunfilesGroupInfo is essentially the same as OutputGroupInfo, but with special 
semantics. If RunfilesGroupInfo is present next to DefaultInfo for a target, then the 
different groups in RunfilesGroupInfo can be used instead of the default runfiles (in 
DefaultInfo.default_runfiles). It is assumed that merging all the depsets contained 
in the runfiles group gives you the full set of default runfiles back, so this provider can be 
used to subdivide the runfiles into categories. 
The following well-known groups are defined: 

●​ SAME_PARTY_RUNFILES: Runfiles from the same package needed at runtime. This 
is typically the main binary and any data files it needs. This is also considered the 
"default" category if no other, more specific category applies. 

●​ OTHER_PARTY_RUNFILES: Runfiles from third-party dependencies needed at 
runtime. These are typically shared libraries, interpreted code, or other resources 
that are not part of the same package as the target. This can be considered to be 
the default category for files provided by external repositories if no other, more 
specific category applies. 

●​ FOUNDATIONAL_RUNFILES: Runfiles that are foundational to the application, e.g., 
interpreter or standard libraries. These can typically be shared across multiple 
applications. Sometimes they can be substituted by the runtime environment. 

●​ DEBUG_RUNFILES: Runfiles needed for debugging the application. These are 
typically not needed for normal operation but can be useful for diagnosing issues. 

https://github.com/vbatts/go-mtree?tab=readme-ov-file#format
https://github.com/malt3/bazel-what-goes-where-experiment
https://github.com/malt3/runfilesgroupinfo.bzl
https://github.com/malt3/fsmanifestinfo.bzl
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This can include external ELF files, DWARF files, source maps, or other external 
debug symbols. 

●​ DOCUMENTATION_RUNFILES: Runfiles needed for documentation. The application 
SHOULD still function without these files. Features that rely on these files MAY be 
disabled if they are not present, including help commands or man pages. 

 
Consider the following usage example: 
 
foo_binary.bzl: 
 

load("@runfilesgroupinfo.bzl", "RunfilesGroupInfo", "SAME_PARTY_RUNFILES", 
"OTHER_PARTY_RUNFILES", "FOUNDATIONAL_RUNFILES", "DEBUG_RUNFILES") 
 
def _foo_binary_impl(ctx): 
    # ... skipping over the rest of the logic 
 
    # The runfiles contain all groups merged into one 
    runfiles = ctx.runfiles( 
        files = [main_file, interpreter_executable], 
        transitive_files = [ 
            same_party_transitive, 
            third_party_transitive, 
            standard_library_data, 
            language_runtime_data, 
            sourcemaps, 
            external_dwarf_symbols, 
        ], 
    ) 
 
    # RunfilesGroupInfo keeps different groups separated 
    runfiles_group_info = RunfilesGroupInfo( 
        SAME_PARTY_RUNFILES = depset([main_file], transitive = 
[same_party_transitive]), 
        OTHER_PARTY_RUNFILES = depset(transitive = [third_party_transitive]), 
        FOUNDATIONAL_RUNFILES = depset([interpreter_executable], transitive = 
[standard_library_data, language_runtime_data]), 
        DEBUG_RUNFILES = depset(transitive = [sourcemaps, 
external_dwarf_symbols]), 
    ) 
 
    # We return DefaultInfo and RunfilesGroupInfo. 
    # This allows for the following use-cases: 



Python

    #  - consumers that cannot interpret RunfilesGroupInfo can simply ignore it 
and just use DefaultInfo (and the runfiles inside of it) 
    #  - consumers that are aware of RunfilesGroupInfo can make informed 
decisions about splitting and filtering the different groups. 
    # 
    # Consumers that are aware of RunfilesGroupInfo can treat it as an optional 
provider. If it is not present, they can still fall back to the full set of 
runfiles from DefaultInfo. 
    return [ 
        DefaultInfo(..., runfiles = runfiles), 
        runfiles_group_info, 
    ] 
 
foo_binary = rule( 
    implementation = _foo_binary_impl, 
    # ... other arguments omitted 
) 

 
custom_packaging_ruleset.bzl: 
 

load("@runfilesgroupinfo.bzl", "RunfilesGroupInfo", "SAME_PARTY_RUNFILES", 
"OTHER_PARTY_RUNFILES", "FOUNDATIONAL_RUNFILES", "DEBUG_RUNFILES") 
 
def _custom_package_impl(ctx): 
    default_info = ctx.attr.binary[DefaultInfo] 
    if RunfilesGroupInfo in ctx.attr.binary: 
        # perform custom logic like splitting the third party deps into a 
separate layer 
        # ... or maybe omit DEBUG_RUNFILES if compilation mode is not dbg 
        runfiles_group_info = ctx.attr.binary[RunfilesGroupInfo] 
 
        # use default_info.files together with some subset of 
runfiles_group_info 
        return ... 
     
    # if RunfilesGroupInfo is missing, we can still process the full set of 
runfiles as a fallback 
    # do something with default_info.files and default_info.default_runfiles 
    return ... 



 

FSManifestInfo Provider 
FSManifestInfo contains a dictionary that maps "path in image" to a Bazel File object 
(we could potentially also allow a depset of File or a runfiles object to be used as the 
value), along with file metadata (in JSON or another TBD format). This approach is similar 
to rules_pkg's PackageFilesInfo. 
 
Take a look at the draft implementation for more information. 

Advantages of Starlark Providers 
●​ Remote Execution-Friendly Approach to Layer Splitting: Current implementations 

for splitting runfiles of binaries into different container image layer make use of 
“large” actions that are provided with all runfiles of a binary. The unused files are 
then reported via unused_inputs_list. This doesn’t work well with remote 
execution, since unused inputs still need to be available to the remote executor. 
The remote cache also is not capable of “stripping” unused inputs. 
RunfilesGroupInfo provides a memory-efficient alternative that allows for 
efficient splitting of runfiles into separate actions, where each action only sees the 
runfiles it needs. 

●​ Pure and inspectable: Similar to rules_pkg's PackageFilesInfo, this can be 
produced by a rule without running an action (it's pure) and can be inspected and 
merged by a downstream rule. 

●​ Direct file access: This format already contains the actual File structs, eliminating 
the need to pass mtree and files separately. 

●​ No path materialization: It doesn't materialize the paths of the inputs, which is 
beneficial for path mapping scenarios where input file paths might be dynamic. 
This benefit is mostly theoretical. 

Disadvantages of Starlark Provider 
●​ Limited visibility into directories (TreeArtifacts): The provider would consist of 

File structs that are mapped to paths in the deliverable with data known during 
the analysis phase. At this stage, tree artifacts (the output of 
ctx.actions.declare_directory), are just a File with is_directory == 
True. It’s impossible to know what files are in a tree artifact during the analysis 
phase.  

●​ Metadata handling: If using a Starlark dictionary for path-to-file mapping, we need 
to carefully consider how to handle and encode metadata in a clear and 
well-understood manner. A possible encoding would be a second dictionary 
containing a path-to-metadata mapping, where the metadata uses a JSON 

https://github.com/bazelbuild/rules_pkg/blob/cd7e10846f97b5cb9b184c87b4ceaf2f1b4b5d3f/pkg/providers.bzl#L33-L53
https://github.com/malt3/fsmanifestinfo.bzl
https://github.com/bazelbuild/rules_pkg/blob/cd7e10846f97b5cb9b184c87b4ceaf2f1b4b5d3f/pkg/providers.bzl#L33-L53


encoding of the metadata, which requires standardization across Bazel rules to 
work effectively. 

 

3. Annotating edges and categorizing files via aspects 
A third approach proposes a technique where dependency edges are annotated with 
semantic information about the kind of dependency (e.g., the boundary between 1st-party 
and 3rd-party dependencies), which could be used by an aspect to split the files up into 
multiple components. 
 
This approach is still in a very early draft stage and subject to change. 
 
An edge could be annotated with well-known semantic tags, including at least the 
following: 

●​ “embeds/runtime dependency” (included in deliverable) vs “Build against/compile 
dependency” (excluded from deliverable) 

●​ “Same party dependency” (implicit by not being separated by an annotated 
boundary) vs. “other party dependency” (separated by an actual annotated 
boundary) 

○​ Dependencies belonging to the same “zone” could be placed in the same 
subdeliverable (e.g., a container image layer), allowing for a separation of 
1st-party and 3rd-party dependencies. 

●​ Other annotations (including custom ones that may be introduced by the delivery 
method) 

 

Conclusion 
Both mtree and the Starlark provider with a dictionary mapping offer distinct advantages 
and disadvantages. While mtree provides a standardized, action-based approach with 
existing tool support, its opacity during the analysis phase and potential limitations with 
extended attributes are concerns. The Starlark provider, on the other hand, offers a pure, 
inspectable, and flexible approach with direct file access, but requires careful design for 
metadata encoding. 
 
Further discussion and detailed API design are needed to determine the most suitable 
approach for the "what-goes-where" provider, taking into account extensibility, 
performance, and ease of use for various language rulesets and packaging/deployment 
scenarios. 
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