08.02.2023 гр. XKM 4/1

МДК.02.02. Управление испытанием холодильного оборудования (по отраслям) и контроль за ним

Раздел 2. Испытание холодильного оборудования в процессе эксплуатации и после ремонта

Тема 2.1. Испытания компрессоров и арматуры после ремонта (4 часа)

- 1. Испытания масляных насосов
- 2. Испытание блок-картеров бескрейцкопфных компрессоров
- 3. Обкатка и испытания компрессоров
- 4. Испытания арматуры

1. Испытания масляных насосов

Отремонтированные масляные насосы проверяют на производительность и создаваемый напор на стендах, а также подключенными к масляной системе во время обкатки компрессора. Насосы должны обеспечивать паспортную производительность при противодавлении $2\cdot10^5$ Па. С увеличением износа и повышением температуры узлы трения пропускают большее количество смазки, поэтому у отремонтированных компрессоров большая часть масла, нагнетаемого насосом, должна сливаться обратно в картер через перепускной вентиль или редукционный клапан. Пружинный предохранительный клапан должен срабатывать при $5\cdot10^5$ Па.

Исправность плунжерных насосов проверяют по давлению смазки, которое они создают в заглушённом нагнетательном маслопроводе при поворачивании рукоятки насоса рукой. Исправные насосы должны поднимать давление до $20 \cdot 10^5$ Па от среднего усилия руки, при этом рукоятка не должна поворачиваться на полный оборот. Неисправные плунжерные насосы заменяют новыми.

2. Испытание блок-картеров бескрейцкопфных компрессоров

Блок-картеры, их детали и узлы, не подвергавшиеся ремонту, способному влиять на их прочность, после сборки испытывают только на плотность. В случае применения при ремонте сварки, нарезки новых резьб, установки дополнительных штуцеров или других деталей блок-картеры и их части испытывают на прочность и плотность по нормам заводской пробы (табл. 7).

Таблица 7. Нормы заводской пробы

Детали и узлы компрессоров	Давление испытания (в Па)	
	на прочность	на плотность

Блок-картеры, сальники, коллекторы и другие		
узлы, работающие под давлением всасывания		
паров агентов		
аммиака	$15,7\cdot10^{5}$	$9,81 \cdot 10^5$
фреона-22	$19,62 \cdot 10^{5}$	$15,7\cdot10^{5}$
фреона-12	$12,75 \cdot 10^5$	$9,81 \cdot 10^5$
Рабочие плоскости цилиндров, гильзы,		
крышки цилиндров, нагнетательные		
коллекторы и другие узлы, работающие под		
давлением нагнетания паров агентов		
аммиака	$23,6\cdot10^{5}$	$15,7\cdot10^{5}$
фреона-22	$24,5 \cdot 10^5$	19,62·10 ⁵
фреона-12	$19,62 \cdot 10^5$	$15,7\cdot10^{5}$

При испытании нагнетательной полости ее отделяют от остальной части блок-картера специальной заглушкой.

В целях безопасности блок-картеры и части аммиачных компрессоров сначала испытывают на прочность водой, затем на плотность – воздухом. Блок-картеры и части фреоновых компрессоров испытывают на прочность и плотность сухим воздухом или инертным газом; при этом испытания на прочность производятся в специально оборудованной камере (бронекамере), стены которой не могут быть разрушены в случае разрыва испытуемой емкости. Под испытательным давлением на прочность сосуд должен находиться 5 мин, после чего давление снижается до испытательного на плотность и производится осмотр всех стенок и соединений.

При гидравлическом испытании наличие неплотностей обнаруживают по появлению течи или увлажнению поверхностей стенок. При пневматическом испытании неплотности обнаруживают по образованию мыльной пены на поверхностях стенок и соединениях, предварительно покрытых с помощью кисточки водным раствором мыла, или по появлению пузырей воздуха в ванне с водой, в которую погружают испытуемый узел. Мыльный раствор предохраняют от быстрого высыхания добавлением в него нескольких капель глицерина.

Никакие неплотности стенок, сварных швов, фланцевых и других соединений не допускаются. Полости водяных рубашек блок-картеров испытывают гидравлическим давлением $5.9 \cdot 10^5$ Па. Перед опробованием гидравлическим давлением емкость блок-картера или узла заполняется водой, при этом в верхней части емкости должен оставаться открытым кран, пробка или заглушка для полного удаления воздуха. Аналогичные устройства должны находиться на емкостях, подвергающихся пневматическому испытанию для плавного и безопасного снижения в них давления.

Давление воды в испытуемой емкости создают гидравлическим насосом с ручным или механическим приводом; сжатый сухой воздух или инертный газ получают от компрессорных установок или из баллонов. Испытуемые емкости подключают к системе сжатого воздуха или к баллонам только через газовые редукторы, предварительно отрегулированные на максимальное испытательное давление. Для контроля давления используют манометры класса точности 1 с

неистекшим сроком освидетельствования; показания рабочих манометров ежедневно сверяют с показаниями контрольных манометров.

Примерная последовательность технологических операций при испытании давлением блок-картеров аммиачных компрессоров:

- заполнение водой и гидравлическое испытание водяных рубашек цилиндров; заполнение водой и испытание на прочность всех полостей блок-картера по норме для емкостей, работающих под давлением всасывания;
- установка заглушек на торцы цилиндров и испытание нагнетательных полостей на прочность по норме для емкостей, работающих под давлением нагнетания;
- слив воды из всех полостей блок-картера, за исключением водяных рубашек, через пробку для выпуска масла, просушка полостей подогревом и продувкой сжатым воздухом;
- испытание стенок и соединений на плотность воздухом или инертным газом. Дефекты на стенках цилиндров с водяными рубашками обнаруживают по пузырям воздуха, появляющимся в верхнем отверстии полостей, заполненных водой.

Перед испытанием в ваннах под водой в емкостях создают давление около $1,47\cdot10^5$ Па для обнаружения крупных дефектов; после устранения дефектов емкости погружают в воду, давление в них поднимают до испытательного и производят полный осмотр.

Список рекомендованных источников

- 1. Игнатьев В.Г., Самойлов А.И. Монтаж, эксплуатация и ремонт холодильного оборудования. М.: Агропромиздат, 1986. 232 с.
- 2. Рудометкин Ф.И., Недельский Г.В. Монтаж, эксплуатация и ремонт холодильных установок. М.: Пищевая промышленность, 1975. 376 с.

Составить опорный конспект, сделать скрин и прислать – vitaliy.buruyan