Chapitre XII: Composition de fonctions

Objectifs:

- Identifier la composée de deux fonctions dans une expression simple
- Calculer la dérivée des fonctions composées usuelles
- Calculer des primitives de fonctions de la forme u'f(u) en fonction d'une primitive de f et de la fonction u

I. Composée de deux fonctions

Exemple: On considère la fonction h définie $f(x) = \sqrt{x-3}$

La fonction f est la composée de deux fonctions u et v telles que $f = v \circ u$ selon le schéma

$$u \qquad v \\ f: x \mapsto x - 3 \mapsto \sqrt{x - 3}$$

Les fonctions u et v sont définies par u(x) = x - 3 et $v(x) = \sqrt{x}$

Définition composée de fonctions

Soient u et v deux fonctions définies respectivement sur les intervalles I et I de \mathbb{R} tels que pour tout réel $x \in I$, $u(x) \in J$.

On note $v \circ u$ la fonction définie sur I par $v \circ u(x) = v(u(x))$

 $v \circ u$ est appelée la fonction composée de u par v

$$1 \mapsto J \mapsto \mathbb{R}$$

$$x \mapsto u(x) \mapsto v[u(x)]$$

$$x \longmapsto v \circ u(x)$$

Exercice 1:

Soit la fonction $f(x) = \frac{1}{x^2}$, quelles sont les fonctions u et v telles que $f = v \circ u$?

$$u(x) = \dots$$

$$v(x) = \dots$$

La fonction f est la composée de....

Exercice 2:

On considère les fonctions $u(x) = x^3$ et v(x) = ln(x)

a) Donner l'expression de la fonction $g = v \circ u$

b) Donner l'expression de la fonction $h = u \circ v$

.....

c) Que constate-t-on?

Exercice 3:

On considère les fonctions $u(x) = x^2 + x$ et $v(x) = \frac{x}{x+1}$

d) Donner l'expression de la fonction $g = v \circ u$

.....

e) Donner l'expression de la fonction $h = u \circ v$

.....

II. <u>Dérivée de la composée de fonctions</u>

a) Dérivée des fonctions composées usuelles

Fonction	Dérivée
u^n avec $n \in \mathbb{Z}^*$	$nu'u^{n-1}$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
cos u	$-u'\sin u$
sin u	u' cos u

Exemple: Calcul la dérivée de la fonction $f(x) = e^{x^2+x}$

f est de la forme e^{u} avec $u(x) = x^2 + x$, on calcule u'(x) = 2x + 1, la dérivée est $(e^{u})' = u'e^{u}$ donc $f'(x) = (2x + 1)e^{x^2 + x}$

Exercice: Calculer les dérivées des fonctions suivantes

1)
$$f(x) = (3x^2 + 6x - 7)^4$$

2)
$$g(x) = ln(7x^5 - 9x)$$

3)
$$h(x) = cos(\frac{1}{x})$$

b) Cas général

Théorème de la dérivée d'une composée de fonctions

Soient u et v deux fonctions dérivables respectivement sur les intervalles I et J de \mathbb{R} tels que $u(x) \in J$. Alors la fonction $v \circ u$ est dérivable et

$$(v \circ u)' = u' \times (v' \circ u)$$

$$(v(u(x))' = u'(x) \times v'(u(x))$$

Exemple : Calcul de la dérivée de la fonction $f(x) = \sqrt{x^2 + 1}$

$$f(x) = \sqrt{x^2 + 1} = v(u(x))$$
 avec $u(x) = x^2 + 1$ et $v(x) = \sqrt{x}$

On a:
$$u'(x) = 2x$$
 et $v'(x) = \frac{1}{2\sqrt{x}}$ donc $f'(x) = u'(x) \times v'(u(x)) = 2x \times \frac{1}{2\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$

Exercice: Calculer la dérivée de la fonction $g(x) = \frac{1}{x^3 - 1}$

III. Primitive de la fonction u'f(u)

Théorème de la primitive de u'f(u)

Soient u et f deux fonctions telles que $f \circ u$ soit définie sur un intervalle I de \mathbb{R} . Si F est une primitive de f alors F(u) est une primitive de la fonction u'f(u).

Primitives des fonctions usuelles :

Fonction	Une primitive
f(ax+b)	$\frac{1}{a}F(ax+b)$ où F est une primitive de f
$u'u^n$ $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{1}{n+1}u^{n+1}$
$u'e^u$	$\frac{n+1}{e^u}$
$\frac{u'}{u}$	$\ln u$
$u'\cos u$	sin u
$u' \sin u$	-cos u

Exemple: Donner une primitive de la fonction $f(x) = (2x - 5)(x^2 - 5x + 4)^2$ f est de la forme $u'u^2$ avec $u(x) = x^2 - 5x + 4$ Une primitive de $u'u^2$ est $\frac{1}{3}u^3$ donc $F(x) = \frac{1}{3}(x^2 - 5x + 4)^3$

$\underline{Exercice\ 1}: Donner\ une\ primitive\ des\ fonctions\ suivantes$

a)
$$g(x) = xe^{x^2}$$

b)
$$h(x) = cox(2x) - sin(3x - 1)$$

Exercice 2: Calculer
$$\int_{-1}^{1} (2x + 1)e^{x^2+x} dx$$