MRG Software Training

W1- Version Control
Fall 2023- Tues 9/12/23

Presentation Slides- Manuel Roglan

Additional Resources
A Scenario
Issues
What to do?
Version Control
Git
Using Git with the Command Line
Setup & Init
Stage & Snapshot
Rewrite History
Branch & Merge
Some Best Practices
Collaborating With GitHub
Share & Update
Pull Requests
Training Project: Version Control

Additional Resources

Git Cheat Sheet
The Odin Project- Introduction to Git

o What is Git? Explained in 2 Minutes!

Pro Git Book
Collaborating with pull requests

A Scenario

Bob begins to create a website to see what users think the answer to how riddle is.

https://www.youtube.com/watch?v=2ReR1YJrNOM&ab_channel=ProgrammingwithMosh
https://file.notion.so/f/f/fc7eab3f-6f97-4f43-a115-8ba144983d1a/e2e51e66-0e2a-4bcf-9526-69077d7b6df7/Version_Control.pdf?id=a398f9d5-746f-44a1-9141-2a3a80fe63f7&table=block&spaceId=fc7eab3f-6f97-4f43-a115-8ba144983d1a&expirationTimestamp=1708754400000&signature=APOcjWbh-VNQCMCP5woJGutXOci9k76WRmgD96AgZ3s&downloadName=Version+Control.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://www.theodinproject.com/lessons/foundations-introduction-to-git
https://git-scm.com/book/en/v2
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests

The Code

<head>

ounsw

<title>
Bob's Great Website!

</title>
head>

@~

<script>
<body> E let handsesCount = 0
let knifeCount = @
Welcome to my Website! let nothingCount = @

document .querySelector ().addEventListener(.0
<h4> document.querySelector().innerHTML = ++handsesCount
Please answer my very important question: 46 }
what have I got in my pocket? 4 document .querySelector() .addEventListener(, 0
document.querySelector().innerHTML = ++knifeCount
<div s > h
ton document.querySelector () .addEventListener(r () = {
hanses document.querySelector() .innerHTML = ++handsesCount
</button: 1)
<button
knife
</button:
<button

</script>

/html8

landses count
Knife count

W W W W L
GRONS

UE

It Works! ... right?

Welcome to my Website!

Please answer my very important question: what have I got in my pocket?

hanses | | knife | | nothing
Handses count: 5, Knife count: 1, Nothing count: 6

Issues

Oh No!

It looks like something is wrong. Bob's users are getting angry and he
doesn't know what the bug is. Fortunately, Bob's friend recommended he
save a copy of the previous website before pushing the new change.

MRG

ing!
Amazing!
website_v1. website_v2. website_v3. website_v4. website_v5. website_v6. website_v7.
html html heml html html html heml
website_v8. website_v9. website_ website_ website_ website_ website_
html html v10.html v11.html v12.html v13.html v14.html
website_ website_ website_ website_ website_
v15.html v16.html v17.html vi8.html v19.html

MRG

Without version control, we’ll only have one copy of the project in its current state, unless we
constantly make duplicate copies when saving changes, which is difficult to remember and keep
track of.

Bob's Team Grows!

Bob's friend Alice has decided to help Bob with his website. Already, Alice
has fixed Bob's previous bug and is willing to keep growing the site. Now,
features can get added twice as fast!

Bob will be working on adding another answer to his riddle, while Alice
creates an entirely new one!

VIRG

This method also doesn't scale at all, especially with multiple people working on the same
project.

Alice's Code

title>

Bob's Great Website! pan>Leaf count: spa an:

, Ring count: </spz a span>
Root coun > < >

Welcome to my Website!
</h1>
<div style= >
h

document . q) .addEventListe

Please answer my very important question:
document . que:

what have I got in my pocket?

) .addEventListener (
).innerHTML =

<button id=
hanses) .addE: Listener(
</button> cument.querys) .innerHTI
utton id=
knife
</button> 7 let aliceCount le ®, ring: 0, root: 0}
utton i

nothing document.querySelector() .addEventListener(

document .querySelector().innerHTML =
1
document . querySelector(.addEventListener (.0
LTEeS @b d) 3 docunent . querySelector ().innerHTML = ++alice
A0 G ‘ 8 2 t selector() .addEventList

c a document . querySelector .addEventListen; c
MR GEIMES /SRS 6 document . querySel ().innerHTHL = ++ali
)

Please answer my very important question
what tells you how much a tree has aged?

Alice's Code

Welcome to my Website!

Please answer my very important question: what have I got in my pocket?

hanses | | knife | | nothing
Handses count: , Knife count: , Nothing count:

Please answer my very important question: what tells you how much a tree has aged?

leaf | |ring| | root

Leaf count: 3, Ring count: 3 , Root count: 3

MIRG

Off to Production!

Now, all Bob needs to do is copy Alice's emailed code and paste it into his
file. Then, he should be good to go!

MIRG

We have to constantly toss around the latest code via email or other mechanisms and then
manually merge the changes.

very important q
much a tree has aged?

Final Code

Website!

head>

Leaf count:
Ring count

<body> . Root count

<hl>
Welcome to my Website!

<div styl
<h4>
Please ans my very important question:
what have I got in my pocket?

<button id
hanses
button>

<button istener(
) . innerHTH

) .addEventListener(
) .innerHTML

<button id=
bty 1 , ring: @, root: @}
button>
</div>
<div style >
Handses count: < i an> 8 }
Knife count: <spa a document . query
Nothing count: <span id spa . document. q
docume
nters.root;

MIRG

Looks Good! ... right?

Welcome to my Website!

Please answer my very important question: what have I got in my pocket?

hanses | | knife | | nothing | |ring
Handses count: 2, Knife count: 1 , Nothing count: 1, Ring: 4

Please answer my very important question: what tells you how much a tree has aged?

leaf | | ring | | root
Leaf count: 1, Ring count: , Root count: 2

MIRG

Oh no

Somehow, Alice's ring button is broken. Who is to blame, Alice or Bob? Both
their code was working separately, but together it failed. Now, Bob will need
to revert to a previous version and try to debug again.

MIRG

And it only gets worse

In this example, Bob and Alice were working on different features during the
same time frame.

Consider a scenario where Alice is working on a feature that gets merged
after Bob has finished three others? Bob will likely have a lot of debugging to
do!

Or consider a scenario where Bob's team consists of more people. Now,
Bob will need to coordinate the merging of lots more code!

MIRG

What to do?

What to do?

Keeping separate files labelled by version number as Bob does is quite
tedious and prone to error.

Luckily, there are sophisticated open-source version control tools we can
use! We use Git.

MRG

Version Control

Version control is a system that records changes you make to files you create so you can easily
track your project history and revert to previous states if needed. It also makes it easier to work
collaboratively on files with others and see who made changes at different times.

Git

Git is a very popular open source version control system (VCS) that works on your local
machine. It performs version control by taking snapshots of your files at different points in time,
which are captured via commits, which include changes to files. Once connected to a network,

Git also supports collaboration by allowing users to synchronize their local repositories with
remote repositories hosted on servers (e.g. GitHub).

Git

Instead of creating files with version number (e.g. website_v3.html), we
create commits.

Instead of working on a feature somewhere separately, and then copying
the new code over, we create branches and merge those branches.

This can all be done from the command line.

MRG

Using Git with the Command Line

Setup & Init
git init

In a new directory, Bob uses "git init" to create a new git repository. Any
changes to files made within this repository will be tracked.

MIRG

Stage & Snapshot

Tracking versions

Whenever Bob has finished making some changes to his website.html file,
he can save a version of that file using the following commands:

git add website.html

git commit —-m "relevant commit message"

git add <path=

The add command tells git which files it should stage for a commit. If you
have multiple files changed in your repository, it may be useful to write
separate commit messages for different groups of files. For example:

git add website1.html

git add website1.js

git commit—-m "website 1 changes"
git add website2.html

git add website2.js

git commit -m "website 2 changes"

MIRG

git commit

The commit command tells git to save a new version of the changes you
have made. The -m flag allows you to give the version an accompanying
commit message, which is useful if you need to look at previous versions.

MIRG

Other Useful Git Commands

Git status

Shows what files have changes made that are not added yet, and it shows what
files have been added but are not yet committed.

Git log
Shows a history of previous commits from the branch you are currently on

MIRG

Bob's git repository

"created repo” "created first "added first "added second
guestion” button” button"

MIRG

Rewrite History

Bob is debugging

During Bob's first attempt, to change his production code to a previous
version, he needed to use a separate file. With git, we don't need to do this.

Note: Normally, there are many checks that should be performed before
code goes into production (unlike in Bob's case). This goes beyond using a
sophisticated version control but using one does help.

MIRG

Reverting to a previous commit

Bob can use "git revert HEAD" to revert to the previous version.

"created repo" "created first "added first "added second "Revert to
question” button” button” added first
button"
e

git revert <commit=

Git revert creates a new commit containing the code before the <commit>
was made. It does not delete any previous commits. You can revert a single
commit:

git revert HEAD

<commit message entered when prompted>

Or you can revert multiple commits:

git revert --no-commit HEAD~<number of commits>

git commit-m "<message>"

MIRG

Branch & Merge

Bob and Alice Work Together

Last time, Bob and Alice worked on their features independently, and Bob

then manually added Alice's code to his. With git, Bob and Alice can work

on separate branches and then merge these branches with the production
branch when their work is done.

How do they work on the same repo from different machines? That will be
answered when we talk about GitHub. For now, assume they are on the
same machine.

Bob and Alice Work Together

bob
] {] {
brancz&c N O

main] {] (/\) 1)) 1) |
branch Qv

aIice& ﬁ

MIRG

Using Branches

git branch

Lists all branches in the repository and shows an * next to the branch you are
currently on

git branch <name=>
Creates a new branch with the name specified.

git checkout <name=>

Moves the HEAD to the specified branch (i.e. changes the branch you are
working on)

git checkout -b <name=>
Creates a new branch with the name specified and moves the HEAD to it

MIRG

Using Branches

git merge <name=
Merges the specified branch with the current branch you are on.

MIRG

Branch management
https://git-scm.com/book/en/v2/Git-Branching-Branch-Management

https://git-scm.com/book/en/v2/Git-Branching-Branch-Management

Some Best Practices

Some Best Practices

Commit frequently and give your commits good messages.

When working on a new feature/optimization/bug-fix/anything, create a
new branch.

Never commit directly to the main branch. More on this later.

MIRG

Collaborating With GitHub

Bob and Alice Work Together

Bob and Alice use different computers. Git is a local version control,
meaning it only stores version information on your machine.

To share code with each other, Bob and Alice need some online medium to
upload and download code pertaining to their repo.

There are many different tools available, such as GitHub, GitBucket, and
GitLab to name a few. We use GitHub.

MIRG

Sharing Code on GitHub

GitHub provides a straightforward user interface for creating a new repo.

Upon creating a repo, GitHub provides us with directions on how to link our
GitHub repo with our local git repo, and we will walk through them.

Sharing Code on GitHub

From your local repo, run the following command:
git remote add origin <link=

Where <link=> is the link to your repository on GitHub:

MIRG

Share & Update

git remote add <origin> <link>

The remote add command creates a hew "remote" to some online
repository. A local git repo can have multiple remote repos. The <origin>
argument specifies the name of the remote to add and the <link> argument
specifies the location of the remote repo.

For the rest of these slides, we assume the remote repo added is called
"origin".

MIRG

Pushing Changes

After working on a branch in your local git repo, you can upload or "push"
your changes to the GitHub repo using "git push <origin= <name=". For
example:

git push origin bob
Or:
git push origin alice

Make sure the name of the branch you are pushing to on GitHub matches
the name of the branch you are on in your local repo.

MIRG

Pulling Changes

If you are on a branch in your local repo and want update it with changes
someone else has pushed to GitHub, you can run "git pull <origin= <name=".
For example:

git pull origin bob

If you want to pull a branch from GitHub that you have not worked on in your
local repo, you will want to run the following commands:

git fetch origin

git checkout <name=

MIRG

Pull Requests

Pull Requests

Pull requests are essentially merges that others can look over before
merging. A pull request is submitted through GitHub. You can add reviewers
to your request, add comments, and make push changes to the branch
while the pull request is under review.

MIRG

Merging Changes

For any branch EXCEPT THE MAIN BRANCH, you can simply merge the
branches in your local repository and push the changes to GitHub.

To merge with the main branch, you will need to submit a pull request.
Virtuoso is configured so that any merges to the main branch must go
through a pull request and be approved by the Software Lead.

MIRG

Training Project: Version Control

https://github.com/gt-mrg-training/version-control
This is a practice repo for learning to use Git.

1.

we e N e

~Ne e e Ule o e

Clone this repo on your local machine.

git clone https://github.com/gt-mrg-training/version-control.git
Create a new branch with your first and last name.

git checkout -b <first name> <last name>

Forexanuﬂe,git checkout -b manuel roglan

Create a new text file containing your name, gt email, and any specific interests
you have for the software.

Look at manuel roglan.txt for an example

Commit your changes.

git add .

git commit -m "a useful message"

Push your changes to GitHub.

git push origin <branch name>

Forexanuﬂe,git push origin manuel roglan

Submit a pull request

Under the pull requests tab on GitHub, select your branch to merge into main.
Add mroglan as a reviewer.

https://github.com/gt-mrg-training/version-control

8. Wait for a review.
9. Upon approval, Squash and Merge changes.

https://github.com/gt-mrg-training/version-control/pull/17

https://github.com/gt-mrg-training/version-control/pull/17

	MRG Software Training
	 W1- Version Control
	Additional Resources
	A Scenario
	Issues
	What to do?

	Version Control
	Git
	Using Git with the Command Line
	Setup & Init
	Stage & Snapshot
	Rewrite History
	Branch & Merge

	Some Best Practices

	Collaborating With GitHub
	Share & Update
	Pull Requests

	Training Project: Version Control

