

Topic covered through ICT : Typical OLAP Operations

Name of the Course Instructor: Michael Sadgun Rao Kona

Course Name & Code : DWDM & 20CS10

Program/Sem./Section : B.Tech / IV Sem. / Section – A & B

Date:21/2/2022

Unit: I

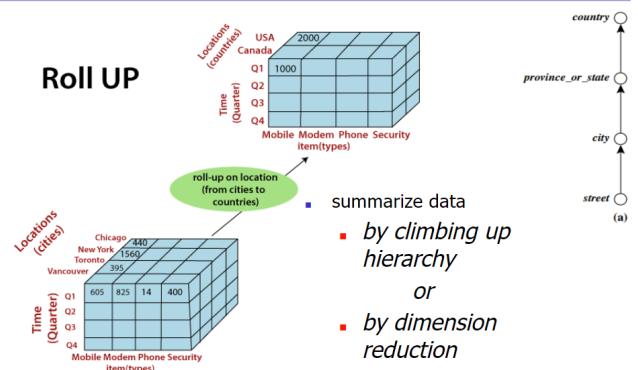
Academic Year: 2021-22

Typical OLAP Operations

- Roll up (drill-up):
- Drill down (roll down):
- Slice and dice: *project and select*
- Pivot (rotate):
 - *reorient the cube, visualization, 3D to series of 2D planes*
- Other operations
 - *drill across: involving (across) more than one fact table*
 - *drill through: Allows users to analyze the same data through different reports, analyze it with different features and even display it through different visualization methods*

Typical OLAP Operations: Roll Up/Drill Up

Roll UP

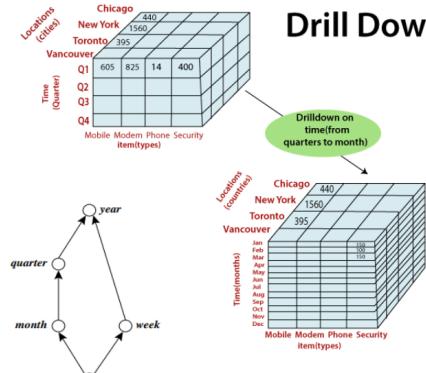


Source & Courtesy: <https://www.javatpoint.com/olap-operations>

55

Typical OLAP Operations: Roll Down

Drill Down

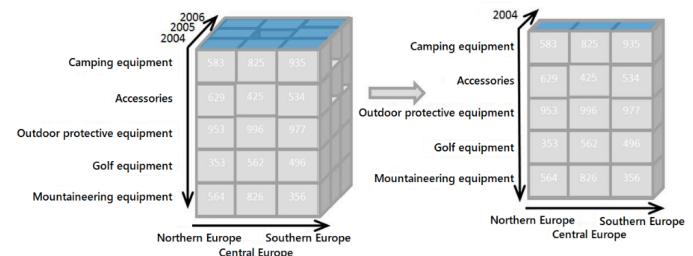


Source & Courtesy: <https://www.javatpoint.com/olap-operations>

- reverse of roll-up
- *from higher level summary to lower level summary or detailed data, or introducing new dimensions*

Typical OLAP Operations: Slicing

- *Slice* is the act of picking a **rectangular subset** of a cube by **choosing a single value for one of its dimensions**, creating a **new cube with one fewer dimension**.
- Example: The sales figures of all sales regions and all product categories of the company in the year 2005 and 2006 are "sliced" out of the data cube.



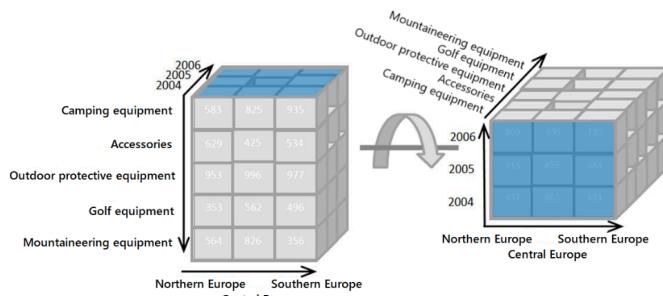
Source & Courtesy: https://en.wikipedia.org/wiki/OLAP_cube

57

56

Typical OLAP Operations:Pivot

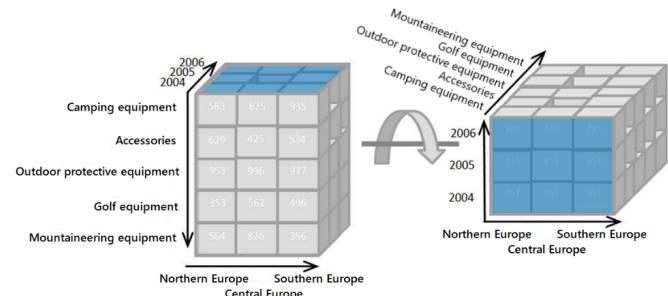
Pivot allows an analyst to **rotate the cube** in space to see its various faces. For example, cities could be arranged vertically and products horizontally while viewing data for a particular quarter.



Source & Courtesy: https://en.wikipedia.org/wiki/OLAP_cube

Typical OLAP Operations:Pivot

Pivot allows an analyst to **rotate the cube** in space to see its various faces. For example, cities could be arranged vertically and products horizontally while viewing data for a particular quarter.



Source & Courtesy: https://en.wikipedia.org/wiki/OLAP_cube

Course Instructor

Mr.Michael Sadgun Rao.K

Module Co-ordinator

Dr.K.Lavanya

HOD

Dr.B.Srinivasa Rao

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Topic covered through ICT : Datamining Tasks

Name of the Course Instructor: Michael Sadgun Rao Kona

Course Name & Code : DWDM & 20CS10

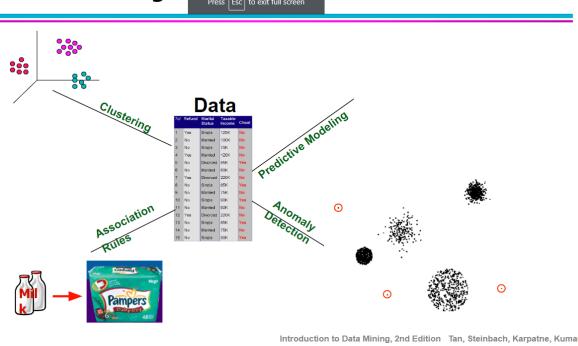
Program/Sem./Section : B.Tech / IV Sem. / Section – A & B

Date:4/4/2022

Unit: II

Academic Year: 2021-22

Data Mining Tasks



Data Mining Tasks

■ Example: (Predicting the Type of a Flower):

Data Mining Tasks

Example: (Predicting the Type of a Flower)

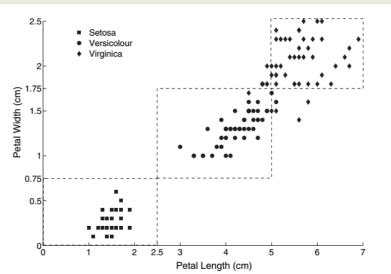


Figure 1.4. Petal width versus petal length for 150 Iris flowers.

Data Mining Tasks

■ Association analysis

- Example (Market Basket Analysis).
 - AIM: find items that are frequently bought together by customers.
 - Association rule {Diapers} → {Milk},
 - suggests that customers who buy diapers also tend to buy milk.
- This rule can be used to identify potential cross-selling opportunities among related items.

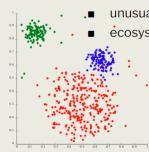
Transaction ID	Items
1	{Bread, Butter, Diapers, Milk}
2	{Coffee, Sugar, Cookies, Salmon}
3	{Bread, Butter, Coffee, Diapers, Milk, Eggs}
4	{Bread, Butter, Salmon, Chicken}
5	{Eggs, Bread, Butter}
6	{Salmon, Diapers, Eggs}
7	{Bread, Tea, Sugar, Eggs}
8	{Coffee, Sugar, Chicken, Eggs}
9	{Bread, Diapers, Milk, Salt}
10	{Tea, Eggs, Cookies, Diapers, Milk}

The transactions data collected at the checkout counters of a grocery store.

Data Mining Tasks

■ Anomaly Detection:

- Task of identifying observations whose characteristics are **significantly different** from the **rest of the data**.
- Such observations are known as **anomalies** or **outliers**.
- A good anomaly detector must have a **high detection rate** and a **low false alarm rate**.
- Applications of anomaly detection include
 - the detection of fraud,
 - network intrusions,
 - unusual patterns of disease, and
 - ecosystem disturbances

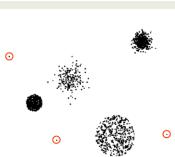


https://commons.wikimedia.org/wiki/File:Anomalous_Web_Traffic.png

Data Mining Tasks

■ Anomaly Detection:

- Example 1.4 (Credit Card Fraud Detection).
- A credit card company records the transactions made by every credit card holder, along with personal information such as credit limit, age, annual income, and address.
- Since the number of **fraudulent cases** is relatively small compared to the number of legitimate transactions, anomaly detection techniques can be applied to **build a profile of legitimate transactions for the users**.
- When a new transaction arrives, it is **compared against the profile of the user**. If the **characteristics of the transaction are very different** from the previously created profile, then the transaction is flagged as **potentially fraudulent**.



Data Mining Tasks

■ Cluster analysis

- Example 1.3 (Document Clustering)
- Each article is represented as a set of **word-frequency pairs** (w, c),
 - where **w** is a **word** and
 - c** is the **number of times the word appears** in the article.
- There are two natural clusters in the data set.
- First cluster -> first four articles (news about the economy)
- Second cluster -> last four articles (news about health care)
- A **good clustering algorithm** should be able to identify these two clusters based on the **similarity between words** that appear in the articles.

Table 1.2. Collection of news articles.

Article	Words
1	dollar: 1, industry: 4, country: 2, loan: 3, deal: 2, government: 2
2	market: 4, money: 4, industry: 2, world: 1, country: 1
3	jobs: 5, inflation: 3, rise: 2, jobs: 2, market: 3, country: 2, index: 3
4	domestic: 3, forecast: 2, gain: 1, market: 2, sale: 3, price: 2
5	patient: 4, symptom: 2, drug: 3, health: 2, clinic: 2, doctor: 2
6	patient: 2, symptom: 3, disease: 3, health: 3, flu: 3
7	death: 2, cancer: 4, drug: 3, public: 4, healthy: 3, doctor: 2
8	medical: 2, cost: 3, increase: 2, patient: 2, health: 3, care: 1

Data Mining Tasks

- Predictive modeling refers to the task of **building a model** for the **target variable** as a function of the **explanatory variables**.
- 2 types of predictive modeling tasks:
 - Classification:** Used for **discrete** target variables
 - Regression:** used for **continuous** target variables.

Measurement	Units (example)	Continuous		Discrete		
		Quantitative data	Qualitative / Categorical / Attribute data	Quantitative	Nominal (example)	Binary (example)
Time of day	Hours, minutes, seconds	1, 2, 3, etc.	N/A	a.m./p.m.		
Date	Day, month, year	Jan, Feb, Mar, etc.	N/A	Before / After		
Cycle time	Hours, minutes, seconds, month, date, year	10, 20, 30, etc.	N/A	Fast / Slow		
Speed	Miles per hour/centimeters per second	10, 20, 30, etc.	N/A	On / Off		
Brightness	Lumens	Light, medium, dark	N/A	Ind / Out		
Temperature	Degrees C or F	10, 20, 30, etc.	N/A	Large / Small		
=Count data	Number of things	10, 20, 30, etc.	N/A			
Test scores	Percent, number correct	F, D, C, B, A	N/A	Pass / Fail		
Defects	Count	Number of cracks	N/A	Good / Bad		
Color	N/A	N/A	Red, blue, green	Good / Bad		
Location	N/A	N/A	East, West, South	Domestic / International		
Groups	N/A	N/A	HR, Legal, IT	Exempt / Non-exempt		
Anything	Percent	10, 20, 30, etc.	N/A	Above / Below		

Course Instructor

Mr.Michael Sadgun Rao.K

Module Co-ordinator

Dr.K.Lavanya

HOD

Dr.B.Srinivasa Rao

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Topic covered through ICT : Decision Tree Induction

Name of the Course Instructor: Michael Sadgun Rao Kona

Course Name & Code : DWDM & 20CS10

Program/Sem./Section : B.Tech / IV Sem. / Section – A & B

Date:22/4/2022

Unit: III

Academic Year: 2021-22

General approach to solving a classification problem

Press Esc to exit full screen

Classification technique (or classifier)

- Systematic approach to building classification models from an input data set.
- Examples
 - Decision tree classifiers,
 - Rule-based classifiers,
 - Neural networks,
 - Support vector machines, and
 - Naïve bayes classifiers.
- Learning algorithm**
 - Used by the classifier
 - To identify a model
 - That best fits the relationship between the attribute set and class label of the input data.

Figure 4.3. General approach for building a classification model.

DECISION TREE INDUCTION

Working of Decision Tree

- Three types of nodes:
 - Root node**
 - No incoming edges
 - Zero or more outgoing edges.
 - Internal nodes**
 - Exactly one incoming edge and
 - Two or more outgoing edges.
 - Leaf or terminal nodes**
 - Exactly one incoming edge and
 - No outgoing edges.
- Each leaf node is assigned a class label.
- Non-terminal nodes** (root & other internal nodes) contain attribute test conditions to separate records that have different characteristics.

Figure 4.4. A decision tree for the mammal classification problem.

DECISION TREE INDUCTION

Working of Decision Tree

Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to the Non-mammal class.

DECISION TREE INDUCTION

Buiding Decision Tree

- Example:-predicting whether a loan applicant will repay or not (defaulted)
- Construct a training set by examining the records of previous borrowers.

Figure 4.7. Hunt's algorithm for inducing decision trees.

DECISION TREE INDUCTION

Measures for Selecting the Best Split

- selection of best split is based on the **degree of impurity** of the child nodes
- Node with class distribution (0, 1) has **zero impurity**.
- Node with uniform class distribution (0.5, 0.5) has the **highest impurity**.
- p - fraction of records that belong to one of the two classes.
- P – maximum(0.5) – class distribution is even
- P- min. (0 or 1)– all records belong to the same class

Entropy(t) = $-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$,
 Gini(t) = $1 - \sum_{i=0}^{c-1} [p(i|t)]^2$,
 Classification error(t) = $1 - \max_i [p(i|t)]$,

where c is the number of classes and $0 \log_2 0 = 0$ in entropy calculations

Figure 4.8. Comparison among the impurity measures for binary classification problems.

DECISION TREE INDUCTION

Methods for Expressing Attribute Test Conditions

- Test condition for Nominal Attributes**
 - nominal attribute can have many values
 - Test condition can be expressed in two ways
 - Multiway split - number of outcomes depends on the number of distinct values
 - Binary splits (used in CART) - produces binary splits by considering all 2^{k-1} – 1 ways of creating a binary partition of k attribute values.

(a) Multiway split

(b) Binary split (by grouping attribute values)

Figure 4.9. Test conditions for nominal attribute

DECISION TREE INDUCTION

Methods for Expressing Attribute Test Conditions

• Test condition for Ordinal Attributes

- Ordinal attributes can also produce binary or multiway splits.
- values can be grouped without violating the order property.
- 4.10© is invalid

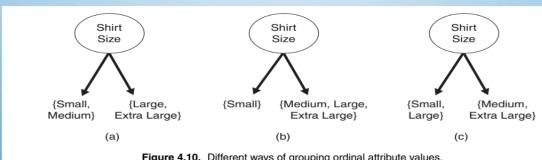


Figure 4.10. Different ways of grouping ordinal attribute values.

DECISION TREE INDUCTION

Methods for Expressing Attribute Test Conditions

• Test condition for Continuous Attributes

- Test condition - Comparison test ($A < v$) or ($A \geq v$) with binary outcomes.
or
- Test condition - a range query with outcomes of the form $v_i \leq A < v_{i+1}$, for $i = 1, \dots, k$.
 - Multiway split
 - Apply the discretization strategies

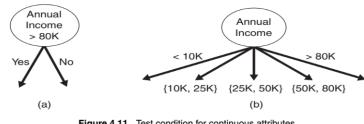


Figure 4.11. Test condition for continuous attributes.

Course Instructor

Mr.Michael Sadgun Rao.K

Module Co-ordinator

Dr.K.Lavanya

HOD

Dr.B.Srinivasa Rao

Topic covered through ICT : Apriori Algorithm

Name of the Course Instructor: Michael Sadgun Rao Kona

Course Name & Code : DWDM & 20CS10

Program/Sem./Section : B.Tech / IV Sem. / Section – A & B

Date:20/5/2022

Unit: IV

Academic Year: 2021-22

Frequent Itemset Generation

- **Lattice structure** – list of all possible itemsets
- itemset lattice for
 - $I = \{a, b, c, d, e\}$
- Data set with k items can generate up to $2^k - 1$ frequent itemsets (without null set)
 - Example:- $2^5 - 1 = 32$
- So, **search space of itemsets** in practical applications is **exponentially large**

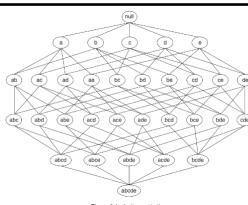


Figure 6.1: An itemset lattice.

Frequent Itemset Generation

- A **brute-force approach** for finding frequent itemsets
 - determine the **support count** for every candidate itemset in the lattice structure.
- **compare each candidate against every transaction**
- Very expensive
 - requires $O(NMw)$ comparisons,
 - N - No. of transactions,
 - $M = 2^k - 1$ is the number of candidate itemsets
 - w - maximum transaction width.

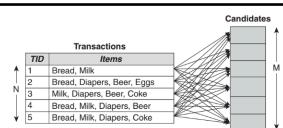


Figure 6.2: Counting the support of candidate itemsets.

Frequent Itemset Generation

The Apriori Principle

If an itemset is frequent, then all of its subsets must also be frequent.

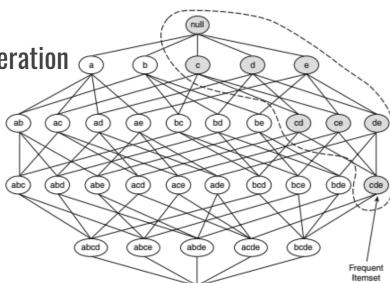


Figure 6.3: An illustration of the Apriori principle. If $\{c, d, e\}$ is frequent, then all subsets of this itemset are frequent.

Frequent Itemset Generation

Support-based pruning:

- strategy of **trimming the exponential search space** based on the support measure is known as support-based pruning.
- It uses **anti-monotone property** of the support measure.
- **Anti-monotone property of the support measure**
 - support for an itemset never exceeds the support for its subsets.
 - Example:
 - $\{a, b\}$ is infrequent,
 - then all of its supersets must be infrequent too.
 - entire subgraph containing the supersets of $\{a, b\}$ can be pruned immediately

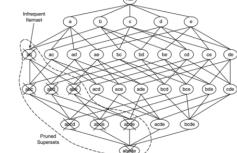


Figure 6.4: An illustration of support-based pruning. If $\{a, b\}$ is infrequent, then all supersets of $\{a, b\}$ are infrequent.

Frequent Itemset Generation in the Apriori Algorithm

Candidate 1-itemsets	
Item	Count
Beer	3
Bread	4
Cola	2
Diapers	4
Milk	4
Eggs	1

Minimum support count = 3

Candidate 2-itemsets	
Itemset	Count
(Beer, Bread)	2
(Beer, Diapers)	3
(Beer, Milk)	2
(Bread, Diapers)	3
(Bread, Milk)	3
(Diapers, Milk)	3

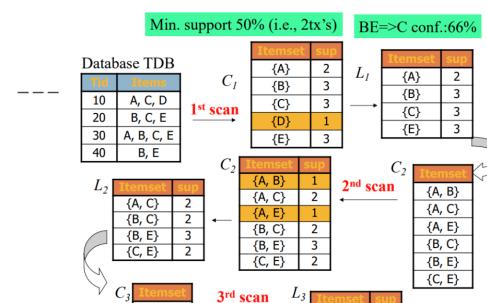
Items removed because of low support

$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 6 + 15 + 20 = 41$

With the *Apriori* principle, this number decreases to

$$\binom{6}{1} + \binom{4}{2} + 1 = 6 + 6 + 1 = 13$$

Figure 6.5: Illustration of frequent itemset generation using the *Apriori* algorithm.



<https://towardsdatascience.com/apriori-association-rule-mining-explanation-and-python-implementation-290b42afdf06>

Frequent Itemset Generation in the Apriori Algorithm

C_k - set of k-candidate itemsets
 F_k - set of k-frequent itemsets

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.

```

1:  $k = 1$ .
2:  $F_k = \{ i \mid i \in I \wedge \sigma(\{i\}) \geq N \times \text{minsup} \}$ . {Find all frequent 1-itemsets}
3: repeat
4:    $k = k + 1$ .
5:    $C_k = \text{apriori-gen}(F_{k-1})$ . {Generate candidate itemsets}
6:   for each transaction  $t \in T$  do
7:      $C_t = \text{subset}(C_k, t)$ . {Identify all candidates that belong to  $t$ }
8:     for each candidate itemset  $c \in C_t$  do
9:        $\sigma(c) = \sigma(c) + 1$ . {Increment support count}
10:    end for
11:   end for
12:    $F_k = \{ c \mid c \in C_k \wedge \sigma(c) \geq N \times \text{minsup} \}$ . {Extract the frequent k-itemsets}
13: until  $F_k = \emptyset$ 
14: Result =  $\bigcup F_k$ .

```

Example

Item	Count
A	4
B	5
C	4
D	4
E	2

After Pruning

Item	Count
A	4
B	5
C	4
D	4
E	2

Transaction	List of Items
T1	A,B,C
T2	B,C,D
T3	D,E
T4	A,B,D
T5	A,B,C,E
T6	A,B,C,D

Support threshold=3% =>
 $0.5 \times 3 \Rightarrow 3$
min.sup=3

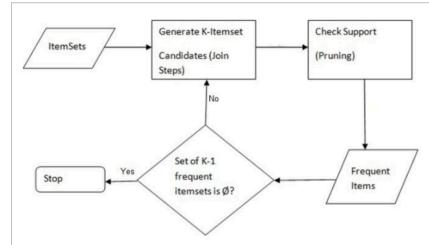
Item	Count
A,B	4
A,C	3
A,D	2
B,C	4
B,D	3
C,D	2

after pruning

Item	Count
A,B,C	3
A,B,D	2
A,C,D	1
B,C,D	2

after pruning

Frequent Itemset Generation in the Apriori Algorithm



<https://www.softwaretestinghelp.com/apriori-algorithm/#:-text=Apriori%20algorithm%20is%20a%20sequence.is%20assumed%20by%20the%20user>.

Course Instructor

Mr.Michael Sadgun Rao.K

Module Co-ordinator

Dr.K.Lavanya

HOD

Dr.B.Srinivasa Rao

[A, B] => [C]
Confidence = support (A, B, C) / support (A, B) = (3/4) * 100 = 75%

[A, C] => [B]
Confidence = support (A, B, C) / support (A, C) = (3/3) * 100 = 100%

[B, C] => [A]
Confidence = support (A, B, C) / support (B, C) = (3/4) * 100 = 75%

[A] => [B, C]
Confidence = support (A, B, C) / support (A) = (3/4) * 100 = 75%

[B] => [A, C]
Confidence = support (A, B, C) / support (B) = (3/5) * 100 = 60%

[C] => [A, B]
Confidence = support (A, B, C) / support (C) = (3/4) * 100 = 75%

This shows that all the above association rules are strong if minimum confidence threshold is 60%.

< 26 > :

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Topic covered through ICT : Types of Clusters

Date: 6/6/2022

Name of the Course Instructor: Michael Sadgun Rao Kona

Unit: V

Course Name & Code : DWDM & 20CS10

Academic Year: 2021-22

Program/Sem./Section : B.Tech / IV Sem. / Section – A & B

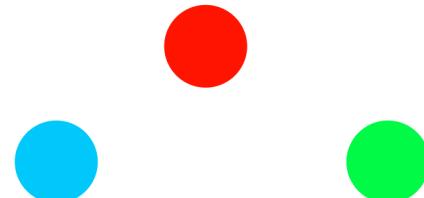
Types of Clusters

- Well-separated clusters
- Prototype-based clusters
- Contiguity-based clusters
- Density-based clusters
- Described by an Objective Function

Types of Clusters: Well-Separated

- Well-Separated Clusters:

A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.



Types of Clusters: Prototype-Based

- Prototype-based (or center based)
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the prototype or "center" of a cluster, than to the center of any other cluster
 - Data - Continuous - Centroid/mean
 - Data - Categorical - Medoid (Most Representative point)

Types of Clusters: Contiguity-Based (Graph)

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.
 - Graph (Data-Nodes, links - Connections), Cluster is group of connected objects.No connections with outside group.

- Useful when clusters are irregular or intertwined
- Trouble when noise is present
- a small bridge of points can merge two distinct clusters.

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

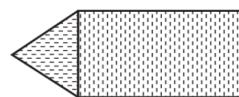
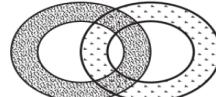
The two circular clusters are not merged, as in Figure, because the bridge between them (previous slide figure) fades into the noise.

Curve that is present in previous slide Figure also fades into the noise and does not form a cluster

A density based definition of a cluster is often employed when the clusters are irregular or intertwined, and when noise and outliers are present.

Types of Clusters: Density-Based

- Shared property(Conceptual Clusters)
 - a cluster as a set of objects that share some



- (e) Conceptual clusters. Points in a cluster share some general property that derives from the entire set of points. (Points in the intersection of the circles belong to both.)

A clustering algorithm would need a very specific concept (sophisticated) of a cluster to successfully detect these clusters. The process of finding such clusters is called conceptual clustering.

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Number of clusters, K , must be specified
- Each cluster is associated with a **centroid** (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

1: Select K points as the initial centroids.

2: **repeat**

3: Form K clusters by assigning all points to the closest centroid.

4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

Course Instructor

Mr.Michael Sadgun Rao.K

Module Co-ordinator

Dr.K.Lavanya

HOD

Dr.B.Srinivasa Rao