

Making Connections: Stacking Cups

Methods

Tables			Equations
Blue Stack	White	Stack	
Cups Height	Cups	Height	
•	<u> </u>		

What it might look like on a test:
A man was trying to determine how many cups it would take for two stacks to be equal in height. The blue
stack contained cups with a base measuring 11.3 cm and a rate of change of 0.8 cm. The white stack contained
cups with a base measuring 7.9 cm and a rate of change of 1.3 cm. So, what do you think? How many cups will
need to be in each stack to be equal height?
What does the point of intersection represent in this situation?

What would represent the y-intercept for each type of cup? How did these affect the graphs and tables?

What would happen if both functions had the same rate of change?

Big Ideas

- Big Idea 1: Systems of Equations contain functions that share the same set of variables.
 - Example from problem:
- Big Idea 2: A solution simultaneously makes each function rule in a system of equations true.
 - Example from problem:
- Big Idea 3: The solution to a system of equations can be represented in multiple, equivalent ways.
 - Example from problem: